Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenxiu Ye is active.

Publication


Featured researches published by Wenxiu Ye.


Plant Physiology | 2012

Cooperative Function of PLDδ and PLDα1 in Abscisic Acid-Induced Stomatal Closure in Arabidopsis

Misugi Uraji; Takeshi Katagiri; Eiji Okuma; Wenxiu Ye; Mohammad Anowar Hossain; Choji Masuda; Aya Miura; Yoshimasa Nakamura; Izumi C. Mori; Kazuo Shinozaki; Yoshiyuki Murata

Phospholipase D (PLD) is involved in responses to abiotic stress and abscisic acid (ABA) signaling. To investigate the roles of two Arabidopsis (Arabidopsis thaliana) PLDs, PLDα1 and PLDδ, in ABA signaling in guard cells, we analyzed ABA responses in guard cells using Arabidopsis wild type, pldα1 and pldδ single mutants, and a pldα1 pldδ double mutant. ABA-induced stomatal closure was suppressed in the pldα1 pldδ double mutant but not in the pld single mutants. The pldα1 and pldδ mutations reduced ABA-induced phosphatidic acid production in epidermal tissues. Expression of either PLDα1 or PLDδ complemented the double mutant stomatal phenotype. ABA-induced stomatal closure in both pldα1 and pldδ single mutants was inhibited by a PLD inhibitor (1-butanol ), suggesting that both PLDα1 and PLDδ function in ABA-induced stomatal closure. During ABA-induced stomatal closure, wild-type guard cells accumulate reactive oxygen species and nitric oxide and undergo cytosolic alkalization, but these changes are reduced in guard cells of the pldα1 pldδ double mutant. Inward-rectifying K+ channel currents of guard cells were inhibited by ABA in the wild type but not in the pldα1 pldδ double mutant. ABA inhibited stomatal opening in the wild type and the pldδ mutant but not in the pldα1 mutant. In wild-type rosette leaves, ABA significantly increased PLDδ transcript levels but did not change PLDα1 transcript levels. Furthermore, the pldα1 and pldδ mutations mitigated ABA inhibition of seed germination. These results suggest that PLDα1 and PLDδ cooperate in ABA signaling in guard cells but that their functions do not completely overlap.


Journal of Plant Physiology | 2012

Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis.

Tahsina Sharmin Hoque; Misugi Uraji; Wenxiu Ye; Mohammad Anowar Hossain; Yoshimasa Nakamura; Yoshiyuki Murata

Methylglyoxal (MG) is an oxygenated short aldehyde and a glycolytic intermediate that accumulates in plants under environmental stresses. Being a reactive α-oxoaldehyde, MG may act as a signaling molecule in plants during stresses. We investigated whether MG induces stomatal closure, reactive oxygen species (ROS) production, and cytosolic free calcium concentration ([Ca²⁺](cyt)) to clarify roles of MG in Arabidopsis guard cells. MG induced production of ROS and [Ca²⁺](cyt) oscillations, leading to stomatal closure. The MG-induced stomatal closure and ROS production were completely inhibited by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), but were not affected by an NAD(P)H oxidase mutation, atrbohD atrbohF. Furthermore, the MG-elicited [Ca²⁺](cyt) oscillations were significantly suppressed by SHAM but not by the atrbohD atrbohF mutation. Neither endogenous abscisic acid nor endogenous methyl jasmonate was involved in MG-induced stomatal closure. These results suggest that intrinsic metabolite MG can induce stomatal closure in Arabidopsis accompanied by extracellular ROS production mediated by SHAM-sensitive peroxidases, intracellular ROS accumulation, and [Ca²⁺](cyt) oscillations.


Plant Physiology | 2013

Calcium-Dependent Protein Kinase CPK6 Positively Functions in Induction by Yeast Elicitor of Stomatal Closure and Inhibition by Yeast Elicitor of Light-Induced Stomatal Opening in Arabidopsis

Wenxiu Ye; Daichi Muroyama; Shintaro Munemasa; Yoshimasa Nakamura; Izumi C. Mori; Yoshiyuki Murata

Calcium-dependent protein kinase CPK6 positively functions in induction by yeast elicitor of stomatal closure and inhibition by yeast elicitor of light-induced stomatal opening in Arabidopsis. Yeast elicitor (YEL) induces stomatal closure that is mediated by a Ca2+-dependent signaling pathway. A Ca2+-dependent protein kinase, CPK6, positively regulates activation of ion channels in abscisic acid and methyl jasmonate signaling, leading to stomatal closure in Arabidopsis (Arabidopsis thaliana). YEL also inhibits light-induced stomatal opening. However, it remains unknown whether CPK6 is involved in induction by YEL of stomatal closure or in inhibition by YEL of light-induced stomatal opening. In this study, we investigated the roles of CPK6 in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis. Disruption of CPK6 gene impaired induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening. Activation by YEL of nonselective Ca2+-permeable cation channels was impaired in cpk6-2 guard cells, and transient elevations elicited by YEL in cytosolic-free Ca2+ concentration were suppressed in cpk6-2 and cpk6-1 guard cells. YEL activated slow anion channels in wild-type guard cells but not in cpk6-2 or cpk6-1 and inhibited inward-rectifying K+ channels in wild-type guard cells but not in cpk6-2 or cpk6-1. The cpk6-2 and cpk6-1 mutations inhibited YEL-induced hydrogen peroxide accumulation in guard cells and apoplast of rosette leaves but did not affect YEL-induced hydrogen peroxide production in the apoplast of rosette leaves. These results suggest that CPK6 positively functions in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis and is a convergent point of signaling pathways for stomatal closure in response to abiotic and biotic stress.


Plant Physiology | 2013

Calcium-dependent protein kinase, CPK6, positively functions in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis

Wenxiu Ye; Daichi Muroyama; Shintaro Munemasa; Yoshimasa Nakamura; Izumi C. Mori; Yoshiyuki Murata

Calcium-dependent protein kinase CPK6 positively functions in induction by yeast elicitor of stomatal closure and inhibition by yeast elicitor of light-induced stomatal opening in Arabidopsis. Yeast elicitor (YEL) induces stomatal closure that is mediated by a Ca2+-dependent signaling pathway. A Ca2+-dependent protein kinase, CPK6, positively regulates activation of ion channels in abscisic acid and methyl jasmonate signaling, leading to stomatal closure in Arabidopsis (Arabidopsis thaliana). YEL also inhibits light-induced stomatal opening. However, it remains unknown whether CPK6 is involved in induction by YEL of stomatal closure or in inhibition by YEL of light-induced stomatal opening. In this study, we investigated the roles of CPK6 in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis. Disruption of CPK6 gene impaired induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening. Activation by YEL of nonselective Ca2+-permeable cation channels was impaired in cpk6-2 guard cells, and transient elevations elicited by YEL in cytosolic-free Ca2+ concentration were suppressed in cpk6-2 and cpk6-1 guard cells. YEL activated slow anion channels in wild-type guard cells but not in cpk6-2 or cpk6-1 and inhibited inward-rectifying K+ channels in wild-type guard cells but not in cpk6-2 or cpk6-1. The cpk6-2 and cpk6-1 mutations inhibited YEL-induced hydrogen peroxide accumulation in guard cells and apoplast of rosette leaves but did not affect YEL-induced hydrogen peroxide production in the apoplast of rosette leaves. These results suggest that CPK6 positively functions in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis and is a convergent point of signaling pathways for stomatal closure in response to abiotic and biotic stress.


Plant Physiology | 2013

Difference in abscisic acid perception mechanisms between closure induction and opening inhibition of stomata.

Ye Yin; Yuji Adachi; Wenxiu Ye; Maki Hayashi; Yoshimasa Nakamura; Toshinori Kinoshita; Izumi C. Mori; Yoshiyuki Murata

Disruption of the ABA receptors pyr1, pyl1, pyl2, and pyl4 does not impair ABA inhibition of stomatal opening. Abscisic acid (ABA) induces stomatal closure and inhibits light-induced stomatal opening. The mechanisms in these two processes are not necessarily the same. It has been postulated that the ABA receptors involved in opening inhibition are different from those involved in closure induction. Here, we provide evidence that four recently identified ABA receptors (PYRABACTIN RESISTANCE1 [PYR1], PYRABACTIN RESISTANCE-LIKE1 [PYL1], PYL2, and PYL4) are not sufficient for opening inhibition in Arabidopsis (Arabidopsis thaliana). ABA-induced stomatal closure was impaired in the pyr1/pyl1/pyl2/pyl4 quadruple ABA receptor mutant. ABA inhibition of the opening of the mutant’s stomata remained intact. ABA did not induce either the production of reactive oxygen species and nitric oxide or the alkalization of the cytosol in the quadruple mutant, in accordance with the closure phenotype. Whole cell patch-clamp analysis of inward-rectifying K+ current in guard cells showed a partial inhibition by ABA, indicating that the ABA sensitivity of the mutant was not fully impaired. ABA substantially inhibited blue light-induced phosphorylation of H+-ATPase in guard cells in both the mutant and the wild type. On the other hand, in a knockout mutant of the SNF1-related protein kinase, srk2e, stomatal opening and closure, reactive oxygen species and nitric oxide production, cytosolic alkalization, inward-rectifying K+ current inactivation, and H+-ATPase phosphorylation were not sensitive to ABA.


Plant Biology | 2013

Two guard cell-preferential MAPKs, MPK9 and MPK12, regulate YEL signalling in Arabidopsis guard cells

Mohammad Abdus Salam; Fabien Jammes; Mohammad Anowar Hossain; Wenxiu Ye; Yoshimasa Nakamura; Izumi C. Mori; June M. Kwak; Yoshiyuki Murata

We report that two mitogen-activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate abscisic acid (ABA)-induced stomatal closure in Arabidopsis thaliana. Yeast elicitor (YEL) induced stomatal closure accompanied by intracellular reactive oxygen species (ROS) accumulation and cytosolic free calcium concentration ([Ca(2+) ]cyt ) oscillation. In this study, we examined whether these two MAP kinases are involved in YEL-induced stomatal closure using MAPKK inhibitors, PD98059 and U0126, and MAPK mutants, mpk9, mpk12 and mpk9 mpk12. Both PD98059 and U0126 inhibited YEL-induced stomatal closure. YEL induced stomatal closure in the mpk9 and mpk12 mutants but not in the mpk9 mpk12 mutant, suggesting that a MAPK cascade involving MPK9 and MPK12 functions in guard cell YEL signalling. However, YEL induced extracellular ROS production, intracellular ROS accumulation and cytosolic alkalisation in the mpk9, mpk12 and mpk9 mpk12 mutants. YEL induced [Ca(2+) ]cyt oscillations in both wild type and mpk9 mpk12 mutant. These results suggest that MPK9 and MPK12 function redundantly downstream of extracellular ROS production, intracellular ROS accumulation, cytosolic alkalisation and [Ca(2+) ]cyt oscillation in YEL-induced stomatal closure in Arabidopsis guard cells and are shared with ABA signalling.


Plant Biology | 2015

Two guard cell mitogen-activated protein kinases, MPK9 and MPK12, function in methyl jasmonate-induced stomatal closure in Arabidopsis thaliana.

Md. Atiqur Rahman Khokon; Mohammad Abdus Salam; Fabien Jammes; Wenxiu Ye; Mohammad Anowar Hossain; Misugi Uraji; Yoshimasa Nakamura; Izumi C. Mori; June M. Kwak; Yoshiyuki Murata

Methyl jasmonate (MeJA) and abscisic acid (ABA) signalling cascades share several signalling components in guard cells. We previously showed that two guard cell-preferential mitogen-activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signalling in Arabidopsis thaliana. In this study, we examined whether these two MAP kinases function in MeJA signalling using genetic mutants for MPK9 and MPK12 combined with a pharmacological approach. MeJA induced stomatal closure in mpk9-1 and mpk12-1 single mutants as well as wild-type plants, but not in mpk9-1 mpk12-1 double mutants. Consistently, the MAPKK inhibitor PD98059 inhibited the MeJA-induced stomatal closure in wild-type plants. MeJA elicited reactive oxygen species (ROS) production and cytosolic alkalisation in guard cells of the mpk9-1, mpk12-1 and mpk9-1 mpk12-1 mutants, as well in wild-type plants. Furthermore, MeJA triggered elevation of cytosolic Ca(2+) concentration ([Ca(2+)]cyt ) in the mpk9-1 mpk12-1 double mutant as well as wild-type plants. Activation of S-type anion channels by MeJA was impaired in mpk9-1 mpk12-1. Together, these results indicate that MPK9 and MPK12 function upstream of S-type anion channel activation and downstream of ROS production, cytosolic alkalisation and [Ca(2+)]cyt elevation in guard cell MeJA signalling, suggesting that MPK9 and MPK12 are key regulators mediating both ABA and MeJA signalling in guard cells.


Journal of Plant Physiology | 2013

Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells.

Wenxiu Ye; Mohammad Anowar Hossain; Shintaro Munemasa; Yoshimasa Nakamura; Izumi C. Mori; Yoshiyuki Murata

We recently demonstrated that endogenous abscisic acid (ABA) is involved in methyl jasmonate (MeJA)-induced stomatal closure in Arabidopsis thaliana. In this study, we investigated whether endogenous ABA is involved in MeJA-induced reactive oxygen species (ROS) and nitric oxide (NO) production and cytosolic alkalization in guard cells using an ABA-deficient Arabidopsis mutant, aba2-2, and an inhibitor of ABA biosynthesis, fluridon (FLU). The aba2-2 mutation impaired MeJA-induced ROS and NO production. FLU inhibited MeJA-induced ROS production in wild-type guard cells. Pretreatment with 0.1 μM ABA, which does not induce stomatal closure in the wild type, complemented the insensitivity to MeJA of the aba2-2 mutant. However, MeJA induced cytosolic alkalization in both wild-type and aba2-2 guard cells. These results suggest that endogenous ABA is involved in MeJA-induced ROS and NO production but not in MeJA-induced cytosolic alkalization in Arabidopsis guard cells.


Plant and Cell Physiology | 2015

Open Stomata 1 Kinase is Essential for Yeast Elicitor-Induced Stomatal Closure in Arabidopsis

Wenxiu Ye; Yuji Adachi; Shintaro Munemasa; Yoshimasa Nakamura; Izumi C. Mori; Yoshiyuki Murata

We recently demonstrated that yeast elicitor (YEL)-induced stomatal closure requires a Ca(2+)-dependent kinase, CPK6. A Ca(2+)-independent kinase, Open Stomata 1 (OST1), is involved in stomatal closure induced by various stimuli including ABA. In the present study, we investigated the role of OST1 in YEL-induced stomatal closure in Arabidopsis using a knock-out mutant, ost1-3, and a kinase-deficient mutant, ost1-2. YEL did not induce stomatal closure or activation of guard cell S-type anion channels in the ost1 mutants unlike in wild-type plants. However, YEL did not increase OST1 kinase activity in wild-type guard cells. The YEL-induced stomatal closure and activation of S-type anion channels were also impaired in a gain-of-function mutant of a clade A type 2C protein phosphatase (ABA INSENSITIVE 1), abi1-1C. In the ost1 mutants like in the wild type, YEL induced H2O2 accumulation, activation of non-selective Ca(2+)-permeable cation (ICa) channels and transient elevations in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in guard cells. These results suggest that OST1 kinase is essential for stomatal closure and activation of S-type anion channels induced by YEL and that OST1 is not involved in H2O2 accumulation, ICa channel activation or [Ca(2+)]cyt elevations in guard cells induced by YEL.


Bioscience, Biotechnology, and Biochemistry | 2017

MPK9 and MPK12 function in SA-induced stomatal closure in arabidopsis thaliana

Md. Atiqur Rahman Khokon; Mohammad Abdus Salam; Fabien Jammes; Wenxiu Ye; Mohammad Anowar Hossain; Eiji Okuma; Yoshimasa Nakamura; Izumi C. Mori; June M. Kwak; Yoshiyuki Murata

Salicylic acid (SA) induces stomatal closure sharing several components with abscisic acid (ABA) and methyl jasmonate (MeJA) signaling. We have previously shown that two guard cell-preferential mitogen-activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signaling and MeJA signaling in Arabidopsis thaliana. In this study, we examined whether these two MAPKs are involved in SA-induced stomatal closure using genetic mutants and a pharmacological, MAPKK inhibitor. Salicylic acid induced stomatal closure in mpk9 and mpk12 single mutants but not in mpk9 mpk12 double mutants. The MAPKK inhibitor PD98059 inhibited SA-induced stomatal closure in wild-type plants. Salicylic acid induced extracellular reactive oxygen species (ROS) production, intracellular ROS accumulation, and cytosolic alkalization in the mpk9, mpk12, and mpk9 mpk12 mutants. Moreover, SA-activated S-type anion channels in guard cells of wild-type plants but not in guard cells of mpk9 mpk12 double mutants. These results imply that MPK9 and MPK12 are positive regulators of SA signaling in Arabidopsis guard cells.

Collaboration


Dive into the Wenxiu Ye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

June M. Kwak

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge