Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. A. Boling is active.

Publication


Featured researches published by J. A. Boling.


Life Sciences | 1989

N-methyl-d, l-aspartate stimulates growth hormone but not luteinizing hormone secretion in the sheep.

M. J. Estienne; K K Schillo; Michael A. Green; Stanley M. Hileman; J. A. Boling

The objective of this experiment was to determine the effects of N-methyl-d, l-aspartate (NMA) on luteinizing hormone (LH) and growth hormone (GH) secretion in castrated male sheep. Blood was sampled from Hampshire wethers every 15 min for 8 hr on day 1. At 4 and 6 hr after the initiation of the experiment, wethers were treated i.v. with NMA at a dose of 12 mg/kg body weight (n = 5) or .9% saline (n = 5). The dosage of NMA was within the range of doses that was previously demonstrated to stimulate LH secretion in monkeys. Blood samples were also collected every 15 min for 1 hr on day 2, beginning 24 hr after the first injection of NMA or saline. Treatment with NMA had no effect on mean LH concentrations, LH pulse frequency or LH pulse amplitude during the 4 hr period following the first injection on day 1. On day 2, however, mean LH concentrations were lower (p less than .01) in NMA versus saline-treated wethers. Conversely, administration of NMA evoked a dramatic increase (p less than .02) in mean GH concentrations on day 1. The mechanisms responsible for the effects of NMA described herein and whether or not these effects are relevant to the physiological control of LH and GH release in the sheep warrants further scrutiny.


Journal of Dairy Science | 2009

Ruminal and abomasal starch hydrolysate infusions selectively decrease the expression of cationic amino acid transporter mRNA by small intestinal epithelia of forage-fed beef steers

S. F. Liao; E. S. Vanzant; D. L. Harmon; K. R. McLeod; J. A. Boling; J. C. Matthews

Although cationic amino acids (CAA) are considered essential to maximize optimal growth of cattle, transporters responsible for CAA absorption by bovine small intestinal epithelia have not been described. This study was conducted to test 2 hypotheses: 1) the duodenal, jejunal, and ileal epithelia of beef cattle differentially express 7 mRNA associated with 4 mammalian amino acid (AA) transport activities: y(+) (CAT1), B(0,+) (ATB(0,+)), b(0,+) (b(0,+)AT and rBAT), and y(+)L (y(+)LAT1, y(+)LAT2, and 4F2hc), and 2) the expression of these mRNA is responsive to small intestinal luminal supply of AA substrates (derived from ruminal microbes) or glucose-derived energy (from starch hydrolysate, SH), or both. Eighteen ruminally and abomasally catheterized Angus steers (body weight = 260 +/- 17 kg) fed an alfalfa cube-based diet at 1.33 x net energy for maintenance requirement were assigned to 3 treatments (n = 6): ruminal and abomasal water infusion (control); ruminal SH and abomasal water infusion; and ruminal water and abomasal SH infusion. The dosage of SH infusion amounted to 20% of metabolizable energy intake. After 14 or 16 d of infusion, steers were slaughtered, duodenal, jejunal, and ileal epithelia were harvested, and total RNA was extracted. The relative amounts of mRNA expressed by epithelia were quantified using real-time reverse transcription-PCR. All 7 mRNA species were expressed by the epithelium from each region, but their abundance differed among the regions. Specifically, duodenal expression of CAT1 and ATB(0,+) mRNA was greater than jejunal or ileal expression; ileal expression of b(0,+)AT, rBAT, and y(+)LAT1 mRNA was greater than jejunal or duodenal expression, whereas the expression of y(+)LAT2 and 4F2hc mRNA did not differ among the 3 epithelia. With regard to SH infusion effect, ruminal infusion down-regulated or tended to down-regulate the jejunal expression of CAT1, rBAT, y(+)LAT2, and 4F2hc mRNA. Abomasal infusion down-regulated the jejunal expression of y(+)LAT2 mRNA and tended to down-regulate the jejunal expression of 4F2hc mRNA. This study characterized the pattern of CAA transporter mRNA expressed by growing beef cattle fed an alfalfa-based diet. Moreover, this study demonstrated that increasing the luminal supply of microbe-derived AA (by ruminal supplementation of SH) results in a reduced capacity of apical and basolateral membrane to transport of CAA, whereas increasing luminal glucose supply (by abomasal supplementation of SH) reduces only the basolateral transport capacity, assuming that CAA transporter mRNA content represents functional capacity.


Journal of Animal Science | 2009

Growing steers grazing high versus low endophyte (Neotyphodium coenophialum)-infected tall fescue have reduced serum enzymes, increased hepatic glucogenic enzymes, and reduced liver and carcass mass.

K. R. Brown; G. A. Anderson; K. W. Son; G. Rentfrow; Lowell P. Bush; J. L. Klotz; J. R. Strickland; J. A. Boling; J. C. Matthews

It is well established that grazing Neotyphodium coenophialum-infected forages results in reduced BW gain and serum prolactin concentrations of cattle. The objective of this study was to determine the potential effects of toxic endophyte-infected tall fescue consumption on blood metabolites, carcass characteristics, and content of proteins critical for AA metabolism in the liver, kidney, and LM tissue of growing steers. Steers grazed a low toxic endophyte (LE; 0.023 microg/g ergot alkaloids) tall fescue-mixed grass pasture (n = 9; BW = 266 +/- 10.9 kg; 5.7 ha) or a high toxic endophyte (HE; 0.746 microg/g of ergot alkaloids) tall fescue pasture (n = 10; BW = 267 +/- 14.5 kg; 5.7 ha) from June 14 through at least September 11 (> or =89 d). No difference was observed for BW (P < 0.10) for the overall 85-d growth period. Also, no differences were observed for ribeye area/100 kg of HCW (P > 0.91), backfat (P > 0.95), or backfat/100 kg of HCW (P > 0.67). However, ADG (P < 0.01), final BW (P < 0.05), HCW (P < 0.01), dressing percentage (P < 0.01), ribeye area (P < 0.01), whole liver wet weight (P < 0.01), and whole liver wet weight/100 kg of end BW (P < 0.01) were greater for LE steers than HE steers. After 85 d of grazing, serum concentrations of alkaline phosphatase (P < 0.05), alanine aminotransferase (P < 0.01), aspartate aminotransferase (P < 0.03), cholesterol (P < 0.01), lactate dehydrogenase (P < 0.01), and prolactin (P < 0.01) were less for HE than LE steers. At slaughter, hepatic content of cytosolic phosphoenolpyruvate carboxykinase (P < 0.01) was greater in HE steers than LE steers. Hepatic content of aspartate aminotransferase (P < 0.01) also was greater, whereas renal and LM content were not (P > or = 0.42). No differences (P > or = 0.15) were observed for hepatic, renal, and LM content of alanine aminotransferase, glutamate dehydrogenase, glutamine synthetase, and 3 glutamate transport proteins. These data indicate that the HE steers displayed classic endophyte toxicity symptoms for growth and blood variables, classic symptoms that were concomitant with novelly identified altered glucogenic capacity of the liver and decreases in carcass characteristics.


Journal of Animal Science | 2012

Alterations in serotonin receptor-induced contractility of bovine lateral saphenous vein in cattle grazing endophyte-infected tall fescue12

J. L. Klotz; K. R. Brown; Y. Xue; J. C. Matthews; J. A. Boling; W. R. Burris; Lowell P. Bush; J. R. Strickland

As part of a 2-yr study documenting the physiologic impact of grazing endophyte-infected tall fescue on growing cattle, 2 experiments were conducted to characterize and evaluate effects of grazing 2 levels of toxic endophyte-infected tall fescue pastures on vascular contractility and serotonin receptors. Experiment 1 examined vasoconstrictive activities of 5-hydroxytryptamine (5HT), α-methylserotonin (ME5HT; a 5HT(2) receptor agonist), d-lysergic acid (LSA), and ergovaline (ERV) on lateral saphenous veins collected from steers immediately removed from a high-endophyte-infected tall fescue pasture (HE) or a low-endophyte-infected mixed-grass (LE) pasture. Using the same pastures, Exp. 2 evaluated effects of grazing 2 levels of toxic endophyte-infected tall fescue on vasoconstrictive activities of (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), BW 723C86 (BW7), CGS-12066A (CGS), and 5-carboxamidotryptamine hemiethanolate maleate (5CT), agonists for 5HT(2A),( 2B), 5HT(1B), and 5HT(7) receptors, respectively. One-half of the steers in Exp. 2 were slaughtered immediately after removal from pasture, and the other one-half were fed finishing diets for >91 d before slaughter. For Exp. 1, maximal contractile intensities were greater (P < 0.05) for steers grazing LE pastures than HE pastures for 5HT (73.3 vs. 48.9 ± 2.1%), ME5HT (52.7 vs. 24.9 ± 1.5%), and ERV (65.7 vs. 49.1 ± 2.6%). Onset of contractile response did not differ for 5HT (P = 0.26) and ERV (P = 0.93), but onset of ME5HT contraction was not initiated (P < 0.05) in HE steers until 10(-4) compared with 10(-5) M in LE-grazing steers. For Exp. 2, maximal contractile intensities achieved with DOI were 35% less (P < 0.05), whereas those achieved with 5CT were 37% greater (P < 0.05), in steers grazing HE pastures. Contractile response to CGS did not differ between pasture groups, and there was an absence of contractile response to BW7 in both groups. There were no differences between endophyte content in contractile responses after animals were finished for >91 d. Experiment 1 demonstrated that grazing of HE pastures for 89 to 105 d induces functional alterations in blood vessels, as evidenced by reduced contractile capacity and altered serotonergic receptor activity. Experiment 2 demonstrated that grazing HE pastures alters vascular responses, which may be mediated through altered serotonin receptor activities, and these alterations may be ameliorated by the removal of ergot alkaloid exposure as demonstrated by the absence of differences in finished steers.


Experimental Biology and Medicine | 1990

Effects of Age on Fasting-Induced Changes in Insulin, Glucose, Urea Nitrogen, and Free Fatty Acids in Sera of Sheep

Stanley M. Hileman; K K Schillo; J. A. Boling; M. J. Estienne

Abstract The hypothesis that prepubertal ewe lambs are metabolically different from postpuberal ewes was tested. Ovariectomized ewes (4 years of age; n = 4) and lambs (6 months of age; n = 4) were fasted for 72 hr. Serum concentrations of insulin, glucose, urea nitrogen, and free fatty acids (FFA) were measured in blood samples taken at 6-hr intervals between 30 hr before and 72 hr after feed removal. Serum concentrations of urea nitrogen and glucose were not different (P > 0.20) between age groups before fasting. Serum concentrations of insulin in ewes increased toward the end of the prefast period whereas those in lambs did not (age × time, P < 0.01). Serum concentrations of FFA in ewes tended to be lower (P < 0.07) than those in lambs prior to fasting. During fasting, concentrations of insulin decreased (P < 0.02) over time in ewes and lambs and did so in a similar manner (age × time, P > 0.70). Urea nitrogen increased (P < 0.0001) in both fasted ewes and fasted lambs in a comparable manner (age × time, P > 0.20). Concentrations of glucose during fasting were not significantly affected (P > 0.90) by age. There was a tendency (P = 0.08) for concentrations of glucose to change over time but the pattern did not appear to be related to fasting. During fasting, concentrations of FFA tended to be higher (P < 0.07) in lambs than in ewes and increased (P < 0.0001) in both groups in a similar fashion (age × time, P > 0.10). The findings herein suggest that turnover of FFA in lambs may be slightly greater than that in ewes during the fed and fasted states.


Journal of Animal Science | 2010

Metabolic acidosis in sheep alters expression of renal and skeletal muscle amino acid enzymes and transporters

Y. Xue; S. F. Liao; K. W. Son; S.L. Greenwood; B.W. McBride; J. A. Boling; J. C. Matthews

To determine the effect of metabolic acidosis on expression of L-Gln, L-Glu, and L-Asp metabolizing enzymes and transporters, the relative content of mRNA, protein, or mRNA and protein, of 6 enzymes and 5 transporters was determined by real-time reverse transcription-PCR and immunoblot analyses in homogenates of kidney, skeletal muscle, and liver of growing lambs fed a common diet supplemented with canola meal (control; n = 5) or HCl-treated canola meal (acidosis; n = 5). Acidotic sheep had a 790% greater (P = 0.050) expression of renal Na(+)-coupled neutral AA transporter 3 mRNA and a decreased expression of renal glutamine synthetase mRNA (47% reduction, P = 0.037) and protein (57% reduction, P = 0.015) than control sheep. No change in renal cytosolic phosphoenolpyruvate carboxykinase (protein and mRNA), glutaminase (mRNA), or L-Glu dehydrogenase (protein) was found. In skeletal muscle, acidotic sheep had 101% more (P = 0.026) aspartate transaminase protein than did control sheep, whereas no change in the content of 3 Na(+)-coupled neutral AA transporters (mRNA) or 2 high-affinity L-Glu transporter proteins was found. In liver, no change in the content of any assessed enzyme or transporter was found. Collectively, these findings suggest that tissue-level responses of sheep to metabolic acidosis are different than for nonruminants. More specifically, these results indicate the potential capacity for metabolism of L-Asp and L-Glu by skeletal muscle, and L-Gln absorption by kidneys, but no change in hepatic expression of L-Gln metabolism, elaborates previous metabolic studies by revealing molecular-level responses to metabolic acidosis in sheep. The reader is cautioned that the metabolic acidosis model employed in this study differs from the increased plasma lactate-induced metabolic acidosis commonly observed in ruminants fed a highly fermentable grain diet.


Journal of Animal Science | 2010

The small intestinal epithelia of beef steers differentially express sugar transporter messenger ribonucleic acid in response to abomasal versus ruminal infusion of starch hydrolysate

S. F. Liao; D. L. Harmon; E. S. Vanzant; K. R. McLeod; J. A. Boling; J. C. Matthews

In mammals, the absorption of monosaccharides from small intestinal lumen involves at least 3 sugar transporters (SugT): sodium-dependent glucose transporter 1 (SGLT1; gene SLC5A1) transports glucose and galactose, whereas glucose transporter (GLUT) 5 (GLUT5; gene SLC2A5) transports fructose, across the apical membrane of enterocytes. In contrast, GLUT2 (gene SLC2A2) transports all of these sugars across basolateral and apical membranes. To compare the distribution patterns and sensitivity with nutritional regulation of these 3 SugT mRNA in beef cattle small intestinal tissue, 18 ruminally and abomasally catheterized Angus steers (BW approximately 260 kg) were assigned to water (control), ruminal cornstarch (partially hydrolyzed by alpha-amylase; SH), or abomasal SH infusion treatments (n = 6) and fed an alfalfa-cube-based diet at 1.3 x NE(m) requirement. The SH infusions amounted to 20% of ME intake. After 14- or 16-d of infusion, steers were killed; duodenal, jejunal, and ileal epithelia harvested; and total RNA extracted. The relative amount of SugT mRNA in epithelia was determined using real-time reverse transcription-PCR quantification methods. Basal expression of GLUT2 and SGLT1 mRNA was greater (P < 0.09) by jejunal than by duodenal or ileal epithelia, whereas basal content of GLUT5 mRNA was greater (P < or = 0.02) by jejunal and duodenal than by ileal epithelia. The content of GLUT5 mRNA in small intestinal epithelia was not affected (P > or = 0.16) by either SH infusion treatment. In contrast, GLUT2 and SGLT1 mRNA content in the ileal epithelium was increased (P < or = 0.05) by 6.5- and 1.3-fold, respectively, after abomasal SH infusion. Duodenal SGLT1 mRNA content also was increased (P = 0.07) by 64% after ruminal SH infusion. These results demonstrate that the ileum of beef cattle small intestine adapts to an increased luminal supply of glucose by increasing SGLT1 and GLUT2 mRNA content, whereas increased ruminal SH supply results in duodenal upregulation of SGLT1 mRNA content. These adaptive responses of GLUT2 and SGLT1 mRNA to abomasal or ruminal SH infusion suggest that beef cattle can adapt to increase their carbohydrate assimilation through small intestinal epithelia, assuming that altered SugT mRNA contents reflect the altered transport functional capacities.


Journal of Dairy Science | 2008

Basal Expression of Nucleoside Transporter mRNA Differs Among Small Intestinal Epithelia of Beef Steers and Is Differentially Altered by Ruminal or Abomasal Infusion of Starch Hydrolysate

S. F. Liao; M.J. Alman; E. S. Vanzant; E.D. Miles; D. L. Harmon; K. R. McLeod; J. A. Boling; J. C. Matthews

In ruminants, microbial-derived nucleic acids are a major source of N and are absorbed as nucleosides by small intestinal epithelia. Although the biochemical activities of 2 nucleoside transport systems have been described for cattle, little is known regarding the regulation of their gene expression. This study was conducted to test 2 hypotheses: (1) the small intestinal epithelia of beef cattle differentially express mRNA for 3 concentrative (CNT1, 2, 3) and 2 equilibrative (ENT1, 2) nucleoside transporters (NT), and (2) expression of these NT is responsive to small intestine luminal supply of rumen-derived microbes (hence, nucleosides), energy (cornstarch hydrolysate, SH), or both. Eighteen ruminally and abomasally catheterized Angus steers (260 +/- 17 kg of BW) were fed an alfalfa cube-based diet at 1.33x NE(m) requirement. Six steers in each of 3 periods were blocked by BW (heavy vs. light). Within each block, 3 steers were randomly assigned to 3 treatments (n = 6): ruminal and abomasal water infusion (control), ruminal SH infusion/abomasal water infusion, or ruminal water infusion/abomasal SH infusion. The dosage of SH infusion amounted to 20% of ME intake. After a 14-or 16-d infusion period, steers were slaughtered, and duodenal, jejunal, and ileal epithelia were harvested for total RNA extraction and the relative amounts of mRNA expressed were determined using real-time RT-PCR quantification methodologies. All 5 NT mRNA were found expressed by each epithelium, but their abundance differed among epithelia. Specifically, jejunal expression of all 5 NT mRNA was higher than that by the ileum, whereas jejunal expression of CNT1, CNT3, and ENT1 mRNA was higher, or tended to be higher, than duodenal expression. Duodenal expression of CNT2, CNT3, and ENT2 mRNA was higher than ileal expression. With regard to SH infusion treatments, ruminal infusion increased duodenal expression of CNT3 (67%), ENT1 (51%), and ENT2 (39%) mRNA and ileal expression of CNT3 (210%) and ENT2 (65%) mRNA. Abomasal infusion increased (54%) ileal expression of ENT2 mRNA and tended to increase (50%) jejunal ENT2 mRNA expression. This study has uniquely characterized the pattern of NT mRNA expression by growing beef cattle and found that the mRNA abundance for CNT3, ENT1, and ENT2 in small intestinal epithelia can be increased by increasing the luminal supply of nucleotides (CNT3, ENT1, ENT2) or glucose (ENT2).


Drug and Chemical Toxicology | 1987

Physiological Responses in Rats Fed Extracts of Endophyte Infected Tall Fescue Seed

J.A. Jackson; R.W. Hemken; Lowell P. Bush; J. A. Boling; M.R. Siegel; P.M. Zavos

Three trials involving 184 male Sprague Dawley rats were conducted to identify the biologically active fraction of endophyte-infected tall fescue seed. In trial 1, seed infected (greater than 95%) with the endophytic fungus Acremonium coenophialum and shown to be toxic to cattle, was serially extracted with hexane, ethylacetate, and methanol, respectively. A second sample of this seed was extracted with chloroform only. Controls included a solvent treatment (spraying the various solvents on endophyte-free seed and carrying the mixture to dryness), the seed post-extraction, endophyte-infected seed and endo-phyte-free seed. Laboratory chow was mixed with all diets to provide 50% of the mix. Trial 2 examined the same treatments as trial 1 except that the chloroform treatment was omitted. Dosages 3 times (equivalent to 22.5 g seed) those used in trial 1 were applied to endophyte-free seed (7.5 g) in an attempt to accentuate any differences. Trial 3 examined the methanol fraction extracted serially, a methanol fraction extracted batchwise, and a water fraction extracted batchwise. Controls included seed residues post-extraction, solvent residue from methanol sprayed on endophyte-free seed, and endophyte-infected seed. Lowered feed intake and weight gains, and depressed serum prolactin concentrations were used as indicators of toxicity. Feed intake was lower in all three trials for rats fed the methanol fraction. In all three trials mean serum prolactin concentrations in rats fed the methanol extracts were not different from those fed endophyte-infected fescue seed. Rats fed the water extract in trial 3 had lower feed intakes than rats fed endophyte-free seed. However, rats fed the seed, post-water extraction, had serum prolactin concentrations similar to that of the negative control. Results suggest that the toxic factor(s) may be concentrated in the methanol extract.


Journal of Dairy Science | 2011

Bovine neuronal vesicular glutamate transporter activity is inhibited by ergovaline and other ergopeptines1

Y. Xue; S. F. Liao; J.R. Strickland; J. A. Boling; J. C. Matthews

l-Glutamate (Glu) is a major excitatory neurotransmitter responsible for neurotransmission in the vertebrate central nervous system. Vesicular Glu transporters VGLUT1 and VGLUT2 concentrate (50mM) Glu [Michaelis constant (measuring affinity), or K(m),=1 to 4mM] into synaptic vesicles (SV) for subsequent release into the synaptic cleft of glutamatergic neurons. Vesicular Glu transporter activity is dependent on vacuolar H(+)-ATPase function. Previous research has shown that ergopeptines contained in endophyte-infected tall fescue interact with dopaminergic and serotoninergic receptors, thereby affecting physiology regulated by these neuron types. To test the hypothesis that ergopeptine alkaloids inhibit VGLUT activity of bovine cerebral SV, SV were isolated from cerebral tissue of Angus-cross steers that were naive to ergot alkaloids. Immunoblot analysis validated the enrichment of VGLUT1, VGLUT2, synaptophysin 1, and vacuolar H(+)-ATPase in purified SV. Glutamate uptake assays demonstrated the dependence of SV VGLUT-like activity on the presence of ATP, H(+)-gradients, and H(+)-ATPase function. The effect of ergopeptines on VGLUT activity was evaluated by ANOVA. Inhibitory competition (IC(50)) experiments revealed that VGLUT-mediated Glu uptake (n=9) was inhibited by ergopeptine alkaloids: bromocriptine (2.83±0.59μM)<ergotamine (20.5±2.77μM)<ergocornine (114±23.1μM)<ergovaline (137±6.55μM). Subsequent ergovaline kinetic inhibition analysis (n=9; Glu=0.05, 0.10, 0.50, 1, 2, 4, 5mM) demonstrated no change in apparent K(m). However, the maximum reaction rate (V(max)) of Glu uptake was decreased when evaluated in the presence of 50, 100, and 200μM ergovaline, suggesting that ergovaline inhibited SV VGLUT activity through a noncompetitive mechanism. The findings of this study suggest cattle with fescue toxicosis may have a decreased glutamatergic neurotransmission capacity due to consumption of ergopeptine alkaloids.

Collaboration


Dive into the J. A. Boling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. F. Liao

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. G. Ely

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

K K Schillo

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. L. Cross

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge