J.A. Britten
Lawrence Livermore National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.A. Britten.
Optics Letters | 1999
M. D. Perry; Deanna M. Pennington; Brent C. Stuart; G. Tietbohl; J.A. Britten; C. Brown; S. Herman; B. Golick; M. Kartz; John L. Miller; Howard T. Powell; M. Vergino; V. Yanovsky
We have developed a hybrid Ti:sapphire-Nd:glass laser system that produces more than 1500 TW (1.5 PW) of peak power. The system produces 660 J of power in a compressed 440+/-20 fs pulse by use of 94-cm master diffraction gratings. Focusing to an irradiance of >7x10(20) W/cm (2) is achieved by use of a Cassegrainian focusing system employing a plasma mirror.
Nuclear Fusion | 2004
C. P. J. Barty; M.H. Key; J.A. Britten; R. Beach; G. Beer; C. Brown; S. Bryan; John A. Caird; T. Carlson; John K. Crane; Jay W. Dawson; Alvin C. Erlandson; D. N. Fittinghoff; Mark Hermann; C. Hoaglan; A. Iyer; L. Jones; Igor Jovanovic; Aleksey M. Komashko; O. L. Landen; Zhi M. Liao; William A. Molander; S. Mitchell; E. I. Moses; Norman D. Nielsen; H.-H. Nguyen; J. Nissen; Stephen A. Payne; Deanna M. Pennington; L. Risinger
The technical challenges and motivations for high-energy, short-pulse generation with the National Ignition Facility (NIF) and possibly other large-scale Nd : glass lasers are reviewed. High-energy short-pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on NIF. Development of metre-scale, high-efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of high energy petawatt (HEPW) pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fibre-based, seed-laser systems. The key motivations for HEPW pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.
Fusion Science and Technology | 2006
J. D. Zuegel; S. Borneis; C. P. J. Barty; B. Legarrec; C. Danson; N. Miyanaga; P. K. Rambo; C. Leblanc; T. J. Kessler; A. W. Schmid; L. J. Waxer; J. H. Kelly; B. Kruschwitz; R. Jungquist; E. I. Moses; J.A. Britten; Igor Jovanovic; Jay W. Dawson; N. Blanchot
Abstract The laser challenges and state of the art in high-energy, solid-state petawatt lasers for fast ignition (FI) research are reviewed. A number of new laser systems are currently under construction or being planned that will facilitate proof-of-principle FI experiments. Recent technological advances in each of the major ultrafast laser subsystems are reported, including chirped-pulse generation and broadband amplification in the front end, high-energy amplification, and pulse compression with adaptive wavefront correction. Unique challenges related to operating high-energy chirped-pulse-amplification laser systems for FI, such as protection from target back reflections, are also addressed.
Optics Letters | 1997
Hoang T. Nguyen; Bruce W. Shore; S. J. Bryan; J.A. Britten; Robert D. Boyd; M. D. Perry
We describe the design, fabrication, and performance of high-efficiency transmission gratings fabricated in bulk fused silica for use in high-power ultraviolet laser systems. The gratings exhibit a diffraction efficiency of 94% in order m=-1 and a damage threshold greater than 13>J/cm( 2) for 3-ns pulses at 351 nm. Model calculations and experimental measurements are in good agreement.
Optics Letters | 1997
Brent C. Stuart; M. D. Perry; John L. Miller; G. Tietbohl; S. Herman; J.A. Britten; C. Brown; Deanna M. Pennington; V. Yanovsky; Kenneth Bradford Wharton
We have demonstrated a Ti:sapphire/Nd:glass laser system that produces up to 51 J of energy in 395-fs pulses (125TW). Focusing at f/3 to a 2.5-times diffraction-limited spot results in a peak irradiance greater than 10(20) W/cm(2) . Our 40-cm-diameter gold diffraction gratings have a damage threshold of 0.42 J/cm(2) for 320-fs pulses.
Optics Express | 2009
Dale Martz; Hoang T. Nguyen; D. Patel; J.A. Britten; D. Alessi; E. Krous; Y. Wang; M. A. Larotonda; Jason George; Brian Knollenberg; B. M. Luther; J. J. Rocca; Carmen S. Menoni
We have demonstrated broad bandwidth large area (229 mm × 114 mm) multilayer dielectric diffraction gratings for the efficient compression of high energy 800 nm laser pulses at high average power.
Fusion Science and Technology | 2009
John A. Caird; Vivek Agrawal; A. Bayramian; Ray Beach; J.A. Britten; Diana Chen; Robert R. Cross; Christopher A. Ebbers; Alvin C. Erlandson; Michael D. Feit; Barry L. Freitas; Chuni Ghosh; C. Haefner; Doug Homoelle; Tony Ladran; Jeff Latkowski; William A. Molander; J. R. Murray; Sasha Rubenchik; Kathleen I. Schaffers; Craig W. Siders; Eddy A. Stappaerts; S. Sutton; Steve Telford; John B. Trenholme; Christopher Barty
Abstract We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd: glass laser technology developed for the National Ignition Facility (NIF)1, along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE’s High Average Power Laser (HAPL) Program and embodied LLNL’s Mercury laser system.2 We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster’s angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of
Presented at: SPIE Boulder Damage Symposium XXXVII, Boulder, CO, United States, Sep 19 - Sep 23, 2005 | 2005
Hoang T. Nguyen; J.A. Britten; Thomas C. Carlson; James D. Nissen; Leslie J. Summers; Curly R. Hoaglan; Michael D. Aasen; J E Peterson; Igor Jovanovic
0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.
quantum electronics and laser science conference | 2005
J.A. Britten; Igor Jovanovic; William A. Molander; Michael D. Aasen; Curtis G. Brown; T.C. Carlson; Curly R. Hoaglan; L. Jones; Hoang T. Nguyen; James D. Nissen; Brent C. Stuart; L.J. Summers; C. P. J. Barty
To enable high-energy petawatt laser operation we have developed the processing methods and tooling that produced both the worlds largest multilayer dielectric reflection grating and the worlds highest laser damage resistant gratings. We have successfully delivered the first ever 80 cm aperture multilayer dielectric grating to LLNLs Titan Intense Short Pulse Laser Facility. We report on the design, fabrication and characterization of multilayer dielectric diffraction gratings.
conference on lasers and electro optics | 2002
J.A. Britten; S. J. Bryan; Leslie J. Summers; Hoang T. Nguyen; Bruce W. Shore; O. Lyngnes
We describe the design, fabrication, and test of large-area multilayer dielectric gratings for high-energy petawatt lasers. 80/spl times/40-cm/sup 2/, 1780-mm/sup -1/ gratings have been fabricated, exhibiting high diffraction efficiency and >4 J/cm/sup 2/, 10-ps damage thresholds on witness samples.