Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. A. Smalyuk is active.

Publication


Featured researches published by V. A. Smalyuk.


Journal of Applied Physics | 1999

Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser

T. R. Boehly; V. A. Smalyuk; D. D. Meyerhofer; J. P. Knauer; D. K. Bradley; R. S. Craxton; M. J. Guardalben; S. Skupsky; T. J. Kessler

We demonstrate a laser beam-smoothing technique known as polarization smoothing. A birefringent optical wedge splits the individual laser beams into two orthogonally polarized beams that, when coupled with a distributed phase plate, produce two speckle patterns shifted with respect to one another. This instantaneously reduces the on-target nonuniformity by a factor of √. We measured this reduction optically and its effect is demonstrated in laser-driven targets.


Physics of Plasmas | 2006

Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution

V.N. Goncharov; O. V. Gotchev; E. Vianello; T. R. Boehly; J. P. Knauer; P.W. McKenty; P. B. Radha; S. P. Regan; T. C. Sangster; S. Skupsky; V. A. Smalyuk; R. Betti; R. L. McCrory; D. D. Meyerhofer; C. Cherfils-Clérouin

Excessive increase in the shell entropy and degradation from spherical symmetry in inertial confinement fusion implosions limit shell compression and could impede ignition. The entropy is controlled by accurately timing shock waves launched into the shell at an early stage of an implosion. The seeding of the Rayleigh-Taylor instability, the main source of the asymmetry growth, is also set at early times during the shock transit across the shell. In this paper we model the shock timing and early perturbation growth of directly driven targets measured on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. By analyzing the distortion evolution, it is shown that one of the main parameters characterizing the growth is the size of the conduction zone Dc, defined as a distance between the ablation front and the laser deposition region. Modes with kDc>1 are stable and experience oscillatory behavior [V. N. Goncharov, Phys. Rev. Lett. 82, 2091 (1999)]. The model shows that the main stabiliz...


Journal of The Optical Society of America B-optical Physics | 2000

Experimental investigation of smoothing by spectral dispersion

S. P. Regan; J.A. Marozas; J. H. Kelly; Thomas R. Boehly; William R. Donaldson; P. A. Jaanimagi; R. L. Keck; Terrance J. Kessler; D. D. Meyerhofer; W. Seka; S. Skupsky; V. A. Smalyuk

Measurements of smoothing rates for smoothing by spectral dispersion (SSD) of high-power, solid-state laser beams used for inertial confinement fusion (ICF) research are reported. Smoothing rates were obtained from the intensity distributions of equivalent target plane images for laser pulses of varying duration. Simulations of the experimental data with the known properties of the phase plates and the frequency modulators are in good agreement with the experimental data. These results inspire confidence in extrapolating to higher bandwidths and other SSD configurations that may be suitable for ICF experiments and ultimately for direct-drive laser-fusion ignition.


Review of Scientific Instruments | 2012

Neutron spectrometry--an essential tool for diagnosing implosions at the National Ignition Facility (invited).

M. Gatu Johnson; J. A. Frenje; D. T. Casey; C. K. Li; F. H. Séguin; R. D. Petrasso; R. C. Ashabranner; R. Bionta; D. L. Bleuel; E. Bond; J. A. Caggiano; A. Carpenter; C. Cerjan; T. J. Clancy; T. Doeppner; M. J. Eckart; M. J. Edwards; S. Friedrich; S. H. Glenzer; S. W. Haan; Edward P. Hartouni; R. Hatarik; S. P. Hatchett; O. S. Jones; G. A. Kyrala; S. Le Pape; R. A. Lerche; O. L. Landen; T. Ma; A. J. Mackinnon

DT neutron yield (Y(n)), ion temperature (T(i)), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y(n), T(i), and dsr. From the measured dsr value, an areal density (ρR) is determined through the relationship ρR(tot) (g∕cm(2)) = (20.4 ± 0.6) × dsr(10-12 MeV). The proportionality constant is determined considering implosion geometry, neutron attenuation, and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration of the as-built spectrometers, which are now performing to the required accuracy. Recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental ignition threshold factor (ITFx), which is a function of dsr (or fuel ρR) and Y(n), has improved almost two orders of magnitude since the first shot in September, 2010.


Physics of Plasmas | 2008

Progress in direct-drive inertial confinement fusion

R. L. McCrory; D. D. Meyerhofer; R. Betti; R. S. Craxton; J. A. Delettrez; D. H. Edgell; V. Yu. Glebov; V.N. Goncharov; D. R. Harding; D. Jacobs-Perkins; J. P. Knauer; F. J. Marshall; P.W. McKenty; P. B. Radha; S. P. Regan; T. C. Sangster; W. Seka; R. W. Short; S. Skupsky; V. A. Smalyuk; J. M. Soures; C. Stoeckl; B. Yaakobi; D. Shvarts; J. A. Frenje; C. K. Li; R. D. Petrasso; F. H. Séguin

Significant progress in direct-drive inertial confinement fusion (ICF) research has been made since the completion of the 60-beam, 30-kJUV OMEGA Laser System [Boehly, Opt. Commun. 133, 495 (1997)] in 1995. A theory of ignition requirements, applicable to any ICF concept, has been developed. Detailed understanding of laser-plasma coupling, electron thermal transport, and hot-electron preheating has lead to the measurement of neutron-averaged areal densities of ∼200mg∕cm2 in cryogenic target implosions. These correspond to an estimated peak fuel density in excess of 100g∕cm3 and are in good agreement with hydrodynamic simulations. The implosions were performed using an 18-kJ drive pulse designed to put the converging fuel on an adiabat of two. The polar-drive concept will allow direct-drive-ignition research on the National Ignition Facility while it is configured for indirect drive. Advanced ICF ignition concepts—fast ignition [Tabak et al., Phys. Plasmas 1, 1626 (1994)] and shock ignition [Betti et al., P...


Physics of Plasmas | 2000

Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

J. P. Knauer; R. Betti; D. K. Bradley; T. R. Boehly; T.J.B. Collins; V.N. Goncharov; P.W. McKenty; D. D. Meyerhofer; V. A. Smalyuk; C. P. Verdon; S. G. Glendinning; D. H. Kalantar; Robert G. Watt

The results from a series of single-mode, Rayleigh–Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5×1014 W/cm2. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%–7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83–124] of the growth of 20, 31, and 60 ...


Physics of Plasmas | 2001

Core performance and mix in direct-drive spherical implosions with high uniformity

D. D. Meyerhofer; J. A. Delettrez; R. Epstein; V. Yu. Glebov; V.N. Goncharov; R. L. Keck; R. L. McCrory; P.W. McKenty; F. J. Marshall; P. B. Radha; S. P. Regan; S. Roberts; W. Seka; S. Skupsky; V. A. Smalyuk; C. Sorce; C. Stoeckl; J. M. Soures; R. P. J. Town; B. Yaakobi; Jonathan D. Zuegel; J. A. Frenje; C. K. Li; R. D. Petrasso; F. H. Séguin; Kurtis A. Fletcher; Stephen Padalino; C. Freeman; N. Izumi; R. A. Lerche

The performance of gas-filled, plastic-shell implosions has significantly improved with advances in on-target uniformity on the 60-beam OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. Polarization smoothing (PS) with birefringent wedges and 1-THz-bandwidth smoothing by spectral dispersion (SSD) have been installed on OMEGA. The beam-to-beam power imbalance is ⩽5% rms. Implosions of 20-μm-thick CH shells (15 atm fill) using full beam smoothing (1-THz SSD and PS) have primary neutron yields and fuel areal densities that are ∼70% larger than those driven with 0.35-THz SSD without PS. They also produce ∼35% of the predicted one-dimensional neutron yield. The results described here suggest that individual-beam nonuniformity is no longer the primary cause of nonideal target performance. A highly constrained model of the core conditions and fuel–shell mix has been developed. It suggests that there is a “clean” fuel region, surrounded by a mixed region, that acc...


Physics of Plasmas | 2014

An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

K. S. Raman; V. A. Smalyuk; D. T. Casey; S. W. Haan; D. Hoover; O. A. Hurricane; J. J. Kroll; A. Nikroo; J. L. Peterson; B. A. Remington; H. F. Robey; D. S. Clark; B. A. Hammel; O. L. Landen; M. M. Marinak; D. H. Munro; Kyle Peterson; J. D. Salmonson

A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.


Physics of Plasmas | 2008

Performance of direct-drive cryogenic targets on OMEGA

V.N. Goncharov; T. C. Sangster; P. B. Radha; R. Betti; T. R. Boehly; T.J.B. Collins; R. S. Craxton; J. A. Delettrez; R. Epstein; V. Yu. Glebov; S. X. Hu; Igor V. Igumenshchev; J. P. Knauer; S. J. Loucks; J.A. Marozas; F. J. Marshall; R. L. McCrory; P.W. McKenty; D. D. Meyerhofer; S. P. Regan; W. Seka; S. Skupsky; V. A. Smalyuk; J. M. Soures; C. Stoeckl; D. Shvarts; J. A. Frenje; R. D. Petrasso; C. K. Li; F. H. Séguin

The success of direct-drive-ignition target designs depends on two issues: the ability to maintain the main fuel adiabat at a low level and the control of the nonuniformity growth during the implosion. A series of experiments was performed on the OMEGA Laser System [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)] to study the physics of low-adiabat, high-compression cryogenic fuel assembly. Modeling these experiments requires an accurate account for all sources of shell heating, including shock heating and suprathermal electron preheat. To increase calculation accuracy, a nonlocal heat-transport model was implemented in the 1D hydrocode. High-areal-density cryogenic fuel assembly with ρR>200mg∕cm2 [T. C. Sangster, V. N. Goncharov, P. B. Radha et al., “High-areal-density fuel assembly in direct-drive cryogenic implosions,” Phys. Rev. Lett. (submitted)] has been achieved on OMEGA in designs where the shock timing was optimized using the nonlocal treatment of the heat conductio...


Physics of Plasmas | 2008

Initial experiments on the shock-ignition inertial confinement fusion concept

W. Theobald; R. Betti; C. Stoeckl; Karen S. Anderson; J. A. Delettrez; V. Yu. Glebov; V.N. Goncharov; F. J. Marshall; Drew N. Maywar; R. L. McCrory; D. D. Meyerhofer; P. B. Radha; T. C. Sangster; W. Seka; D. Shvarts; V. A. Smalyuk; A. A. Solodov; B. Yaakobi; C. Zhou; J. A. Frenje; C. K. Li; F. H. Séguin; R. D. Petrasso; L. J. Perkins

Shock ignition is a two-step inertial confinement fusion concept where a strong shock wave is launched at the end of the laser pulse to ignite the compressed core of a low-velocity implosion. Initial shock-ignition technique experiments were performed at the OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using 40-μm-thick, 0.9-mm-diam, warm surrogate plastic shells filled with deuterium gas. The experiments showed a significant improvement in the performance of low-adiabat, low-velocity implosions compared to conventional “hot-spot” implosions. High areal densities with average values exceeding ∼0.2g∕cm2 and peak areal densities above 0.3g∕cm2 were measured, which is in good agreement with one-dimensional hydrodynamical simulation predictions. Shock-ignition technique implosions with cryogenic deuterium and deuterium-tritium ice shells produced areal densities close to the 1D prediction and achieved up to 12% of the predicted 1D fusion yield.

Collaboration


Dive into the V. A. Smalyuk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. P. Regan

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. P. Knauer

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. D. Petrasso

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. K. Li

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

P. B. Radha

University of Rochester

View shared research outputs
Researchain Logo
Decentralizing Knowledge