J. A. Diehl
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. A. Diehl.
Oncogene | 2010
Ekaterina Bobrovnikova-Marjon; Christina Grigoriadou; Dariusz Pytel; Fan Zhang; Jiangbin Ye; Constantinos Koumenis; Douglas R. Cavener; J. A. Diehl
To proliferate and expand in an environment with limited nutrients, cancer cells co-opt cellular regulatory pathways that facilitate adaptation and thereby maintain tumor growth and survival potential. The endoplasmic reticulum (ER) is uniquely positioned to sense nutrient deprivation stress and subsequently engage signaling pathways that promote adaptive strategies. As such, components of the ER stress-signaling pathway represent potential antineoplastic targets. However, recent investigations into the role of the ER resident protein kinase, RNA-dependent protein kinase (PKR)-like ER kinase (PERK) have paradoxically suggested both pro- and anti-tumorigenic properties. We have used animal models of mammary carcinoma to interrogate the contribution of PERK in the neoplastic process. The ablation of PERK in tumor cells resulted in impaired regeneration of intracellular antioxidants and accumulation of reactive oxygen species triggering oxidative DNA damage. Ultimately, PERK deficiency impeded progression through the cell cycle because of the activation of the DNA damage checkpoint. Our data reveal that PERK-dependent signaling is used during both tumor initiation and expansion to maintain redox homeostasis, thereby facilitating tumor growth.
Oncogene | 2006
Andrew B. Gladden; R Woolery; Priya Aggarwal; Mariusz A. Wasik; J. A. Diehl
Mantle cell lymphoma (MCL) is a B-cell lymphoma characterized by overexpression of cyclin D1 due to the t(11;14) chromosomal translocation. While expression of cyclin D1 correlates with MCL development, expression of wild-type (WT) cyclin D1 transgene in murine lymphocytes is unable to drive B-cell lymphoma. As cyclin D1 mutants that are refractory to nuclear export display heighten oncogenicity in vitro compared with WT D1, we generated mice expressing FLAG-D1/T286A, a constitutively nuclear mutant, under the control of the immunoglobulin enhancer, Eμ. D1/T286A transgenic mice universally develop a mature B-cell lymphoma. Expression of D1/T286A in B lymphocytes results in S phase entry in resting lymphocytes and increased apoptosis in spleens of young premalignant mice. Lymphoma onset correlates with perturbations in p53/MDM2/p19Arf expression and with BcL-2 overexpression suggesting that alterations in one or both of these pathways may contribute to lymphoma development. Our results describe a cyclin D1-driven model of B-cell lymphomagenesis and provide evidence that nuclear-retention of cyclin D1 is oncogenic in vivo.
Oncogene | 2006
S Benzeno; F Lu; Mingzhou Guo; O Barbash; Fangliang Zhang; J G Herman; Peter S. Klein; Anil K. Rustgi; J. A. Diehl
Although cyclin D1 is overexpressed in a significant number of human cancers, overexpression alone is insufficient to promote tumorigenesis. In vitro studies have revealed that inhibition of cyclin D1 nuclear export unmasks its neoplastic potential. Cyclin D1 nuclear export depends upon phosphorylation of a C-terminal residue, threonine 286, (Thr-286) which in turn promotes association with the nuclear exportin, CRM1. Mutation of Thr-286 to a non-phosphorylatable residue results in a constitutively nuclear cyclin D1 protein with significantly increased oncogenic potential. To determine whether cyclin D1 is subject to mutations that inhibit its nuclear export in human cancer, we have sequenced exon 5 of cyclin D1 in primary esophageal carcinoma samples and in cell lines derived from esophageal cancer. Our work reveals that cyclin D1 is subject to mutations in primary human cancer. The mutations identified specifically disrupt phosphorylation of cyclin D1 at Thr-286, thereby enforcing nuclear accumulation of cyclin D1. Through characterization of these mutants, we also define an acidic residue within the C-terminus of cyclin D1 that is necessary for recognition and phosphorylation of cyclin D1 by glycogen synthase kinase-3 beta. Finally, through construction of compound mutants, we demonstrate that cell transformation by the cancer-derived cyclin D1 alleles correlates with their ability to associate with and activate CDK4. Our data reveal that cyclin D1 is subject to mutations in primary human cancer that specifically disrupt phosphorylation-dependent nuclear export of cyclin D1 and suggest that such mutations contribute to the genesis and progression of neoplastic growth.
Oncogene | 2008
Douglas I. Lin; M. D. Lessie; Andrew B. Gladden; Craig H. Bassing; Kay Uwe Wagner; J. A. Diehl
Cyclin D1 levels are maintained at steady state by phosphorylation-dependent nuclear export and polyubiquitination by SCFFBX4-αB crystallin. Inhibition of cyclin D1 proteolysis has been implicated as a causative factor leading to its overexpression in breast and esophageal carcinomas; however, the contribution of stable cyclin D1 to the genesis of such carcinomas has not been evaluated. We therefore generated transgenic mice wherein expression of either wild-type or a stable cyclin D1 allele (D1T286A) is regulated by MMTV-LTR. MMTV-D1T286A mice developed mammary adenocarcinomas at an increased rate relative to MMTV-D1 mice. Similar to human cancers that overexpress cyclin D1, D1T286A tumors were estrogen receptor-positive and exhibited estrogen-dependent growth. Collectively, these results suggest that temporal control of cyclin D1 subcellular localization and proteolysis is critical for maintenance of homeostasis within the mammary epithelium.
Molecular and Cellular Biology | 2012
Ekaterina Bobrovnikova-Marjon; Dariusz Pytel; Matthew J. Riese; Laura Pontano Vaites; N. Singh; Gary A. Koretzky; Eric S. Witze; J. A. Diehl
ABSTRACT The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought.
Molecular and Cellular Biology | 2012
Y. Gao; Daniel J. Sartori; Changhong Li; Qiujing Yu; Jake A. Kushner; M. C. Simon; J. A. Diehl
ABSTRACT Germ line PERK mutations are associated with diabetes mellitus and growth retardation in both rodents and humans. In contrast, late embryonic excision of PERK permits islet development and was found to prevent onset of diabetes, suggesting that PERK may be dispensable in the adult pancreas. To definitively establish the functional role of PERK in adult pancreata, we generated mice harboring a conditional PERK allele in which excision is regulated by tamoxifen administration. Deletion of PERK in either young adult or mature adult mice resulted in hyperglycemia associated with loss of islet and β cell architecture. PERK excision triggered intracellular accumulation of proinsulin and Glut2, massive endoplasmic reticulum (ER) expansion, and compensatory activation of the remaining unfolded-protein response (UPR) signaling pathways specifically in pancreatic tissue. Although PERK excision increased β cell death, this was not a result of decreased proliferation as previously reported. In contrast, a significant and specific increase in β cell proliferation was observed, a result reflecting increased cyclin D1 accumulation. This work demonstrates that contrary to expectations, PERK is required for secretory homeostasis and β cell survival in adult mice.
Oncogene | 2007
Kenji Oyama; Takaomi Okawa; Hiroshi Nakagawa; Munenori Takaoka; Claudia D. Andl; Seok-Hyun Kim; Andres J. Klein-Szanto; J. A. Diehl; Meenhard Herlyn; Wafik S. El-Deiry; Anil K. Rustgi
Epidermal growth factor receptor (EGFR) overexpression and activation is critical in the initiation and progression of cancers, especially those of epithelial origin. EGFR activation is associated with the induction of divergent signal transduction pathways and a gamut of cellular processes; however, the cell-type and tissue-type specificity conferred by certain pathways remains to be elucidated. In the context of the esophageal epithelium, a prototype stratified squamous epithelium, EGFR overexpression is relevant in the earliest events of carcinogenesis as modeled in a three-dimensional organotypic culture system. We demonstrate that the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, and not the MEK/MAPK (mitogen-activated protein kinase) pathway, is preferentially activated in EGFR-mediated esophageal epithelial hyperplasia, a premalignant lesion. The hyperplasia was abolished with direct inhibition of PI3K and of AKT but not with inhibition of the MAPK pathway. With the introduction of an inducible AKT vector in both primary and immortalized esophageal epithelial cells, we find that AKT overexpression and activation is permissive for complete epithelial formation in organotypic culture, but imposes a growth constraint in cells grown in monolayer. In organotypic culture, AKT mediates changes related to cell shape and size with an expansion of the differentiated compartment.
Cancer Discovery | 2015
Y. Li; N. Chitnis; Hiroshi Nakagawa; Yoshiaki Kita; Shoji Natsugoe; Yi Yang; Zihai Li; Mariusz A. Wasik; Andres J. Klein-Szanto; Anil K. Rustgi; J. A. Diehl
UNLABELLED Protein arginine methyltransferase 5 (PRMT5) has been implicated as a key modulator of lymphomagenesis. Whether PRMT5 has overt oncogenic function in the context of leukemia/lymphoma and whether it represents a therapeutic target remains to be established. We demonstrate that inactivation of PRMT5 inhibits colony-forming activity by multiple oncogenic drivers, including cyclin D1, c-MYC, NOTCH1, and MLL-AF9. Furthermore, we demonstrate that PRMT5 overexpression specifically cooperates with cyclin D1 to drive lymphomagenesis in a mouse model, revealing inherent neoplastic activity. Molecular analysis of lymphomas revealed that arginine methylation of p53 selectively suppresses expression of crucial proapoptotic and antiproliferative target genes, thereby sustaining tumor cell self-renewal and proliferation and bypassing the need for the acquisition of inactivating p53 mutations. Critically, analysis of human tumor specimens reveals a strong correlation between cyclin D1 overexpression and p53 methylation, supporting the biomedical relevance of this pathway. SIGNIFICANCE We have identified and functionally validated a crucial role for PRMT5 for the inhibition of p53-dependent tumor suppression in response to oncogenic insults. The requisite role for PRMT5 in the context of multiple lymphoma/leukemia oncogenic drivers suggests a molecular rationale for therapeutic development.
Oncogene | 2013
Sabyasachi Bhattacharya; Wei-Chun HuangFu; Dong G; Juan Qian; Darren P. Baker; Jayashree Karar; Constantinos Koumenis; J. A. Diehl; Serge Y. Fuchs
Viral and pharmacological inducers of protein kinase RNA-activated (PKR)-like ER kinase (PERK) were shown to accelerate the phosphorylation-dependent degradation of the IFNAR1 chain of the Type 1 interferon (IFN) receptor and to limit cell sensitivity to IFN. Here we report that hypoxia can elicit these effects in a PERK-dependent manner. The altered fate of IFNAR1 affected by signaling downstream of PERK depends on phosphorylation of eIF2α (eukaryotic translational initiation factor 2-α) and ensuing activation of p38α kinase. Activators of other eIF2α kinases such as PKR or GCN2 (general control nonrepressed-2) are also capable of eliminating IFNAR1 and blunting IFN responses. Modulation of constitutive PKR activity in human breast cancer cells stabilizes IFNAR1 and sensitizes these cells to IFNAR1-dependent anti-tumorigenic effects. Although downregulation of IFNAR1 and impaired IFNAR1 signaling can be elicited in response to amino-acid deficit, the knockdown of GCN2 in melanoma cells reverses these phenotypes. We propose that, in cancer cells and the tumor microenvironment, activation of diverse eIF2α kinases followed by IFNAR1 downregulation enables multiple cellular components of tumor tissue to evade the direct and indirect anti-tumorigenic effects of Type 1 IFN.
Molecular and Cellular Biology | 2011
Laura Pontano Vaites; Eric K. Lee; Zhaorui Lian; Olena Barbash; Darshan Roy; Mariusz A. Wasik; Andres J. Klein-Szanto; Anil K. Rustgi; J. A. Diehl
ABSTRACT Skp1-Cul1-F-box (SCF) E3 ubiquitin ligase complexes modulate the accumulation of key cell cycle regulatory proteins. Following the G1/S transition, SCFFbx4 targets cyclin D1 for proteasomal degradation, a critical event necessary for DNA replication fidelity. Deregulated cyclin D1 drives tumorigenesis, and inactivating mutations in Fbx4 have been identified in human cancer, suggesting that Fbx4 may function as a tumor suppressor. Fbx4+/− and Fbx4−/− mice succumb to multiple tumor phenotypes, including lymphomas, histiocytic sarcomas and, less frequently, mammary and hepatocellular carcinomas. Tumors and premalignant tissue from Fbx4+/− and Fbx4−/− mice exhibit elevated cyclin D1, an observation consistent with cyclin D1 as a target of Fbx4. Molecular dissection of the Fbx4 regulatory network in murine embryonic fibroblasts (MEFs) revealed that loss of Fbx4 results in cyclin D1 stabilization and nuclear accumulation throughout cell division. Increased proliferation in early passage primary MEFs is antagonized by DNA damage checkpoint activation, consistent with nuclear cyclin D1-driven genomic instability. Furthermore, Fbx4−/− MEFs exhibited increased susceptibility to Ras-dependent transformation in vitro, analogous to tumorigenesis observed in mice. Collectively, these data reveal a requisite role for the SCFFbx4 E3 ubiquitin ligase in regulating cyclin D1 accumulation, consistent with tumor suppressive function in vivo.