Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. A. Eisner is active.

Publication


Featured researches published by J. A. Eisner.


The Astrophysical Journal | 2004

Resolved Inner Disks around Herbig Ae/Be Stars

J. A. Eisner; Benjamin F. Lane; Lynne A. Hillenbrand; R. L. Akeson; A. I. Sargent

We have observed 14 Herbig Ae/Be (HAEBE) sources with the long-baseline near-IR Palomar Testbed Interferometer. All except two sources are resolved at 2.2 μm, with angular sizes generally 5 mas. We determine the size scales and orientations of the 2.2 μm emission using various models: uniform disks, Gaussians, uniform rings, flat accretion disks with inner holes, and flared disks with puffed-up inner rims. Although it is difficult to distinguish different radial distributions, we are able to place firm constraints on the inclinations of most sources; seven objects display significantly inclined morphologies. The inner disk inclinations derived from our near-IR data are generally compatible with the outer disk geometries inferred from millimeter interferometric observations, implying that HAEBE disks are not significantly warped. Using the derived inner disk sizes and inclinations, we compute the spectral energy distributions (SEDs) for two simple physical disk models and compare these with observed SEDs compiled from the literature and new near-IR photometry. While geometrically flat accretion disk models are consistent with the data for the earliest spectral types in our sample (MWC 297, V1685 Cyg, and MWC 1080), the later type sources are explained better through models incorporating puffed-up inner disk walls. The different inner disk geometries may indicate different accretion mechanisms for early- and late-type HAEBE stars.


Nature | 2015

Accreting protoplanets in the LkCa 15 transition disk

Stephanie Sallum; Katherine B. Follette; J. A. Eisner; Laird M. Close; P. Hinz; Kaitlin M. Kratter; Jared R. Males; A. Skemer; Bruce A. Macintosh; Peter G. Tuthill; Vanessa P. Bailey; Denis Defrere; Katie M. Morzinski; Timothy J. Rodigas; Eckhart Spalding; A. Vaz; Alycia J. Weinberger

Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1,900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition disks, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition disks show evidence for the presence of young planets in the form of disk asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15 (refs 8, 9). Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disk clearing. With accurate source positions over multiple epochs spanning 2009–2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect Hα emission from the innermost companion, LkCa 15 b, evincing hot (about 10,000 kelvin) gas falling deep into the potential well of an accreting protoplanet.


The Astrophysical Journal | 2005

Observations of T Tauri disks at sub-AU radii: Implications for magnetospheric accretion and planet formation

J. A. Eisner; Lynne A. Hillenbrand; Russel J. White; R. L. Akeson; A. I. Sargent

We determine inner disk sizes and temperatures for four solar-type (1-2 M?) classical T Tauri stars, AS 207A, V2508 Oph, AS 205A, and PX Vul, using 2.2 ?m observations from the Keck Interferometer. Nearly contemporaneous near-IR adaptive optics imaging photometry, optical photometry, and high-dispersion optical spectroscopy are used to distinguish contributions from the inner disks and central stars in the interferometric observations. In addition, the spectroscopic and photometric data provide estimates of stellar properties, mass accretion rates, and disk corotation radii. We model our interferometric and photometric data in the context of geometrically flat accretion disk models with inner holes, and flared disks with puffed-up inner walls. Models incorporating puffed-up inner disk walls generally provide better fits to the data, similar to previous results for higher mass Herbig Ae stars. Our measured inner disk sizes are larger than disk truncation radii predicted by magnetospheric accretion models, with larger discrepancies for sources with higher mass accretion rates. We suggest that our measured sizes correspond to dust sublimation radii, and that optically thin gaseous material may extend farther inward to the magnetospheric truncation radii. Finally, our inner disk measurements constrain the location of terrestrial planet formation as well as potential mechanisms for halting giant planet migration.


The Astrophysical Journal | 2005

Observations and modeling of the inner disk region of T tauri stars

R. L. Akeson; Christina Walker; Kenneth Wood; J. A. Eisner; Elena Scire; Bryan E. Penprase; David R. Ciardi; G. T. van Belle; Barbara A. Whitney; J. E. Bjorkman

We present observations of four T Tauri stars using long baseline infrared interferometry from the Palomar Testbed Interferometer. The target sources, T Tau N, SU Aur, RY Tau, and DR Tau, are all known to be surrounded by dusty circumstellar disks. The observations directly trace the inner regions (<1 AU) of the disk and can be used to constrain the physical properties of this material. For three of the sources observed, the infrared emission is clearly resolved. We first use geometric models to characterize the emission region size, which ranges from 0.04 to 0.3 AU in radius. We then use Monte Carlo radiation transfer models of accretion disks to jointly model the spectral energy distribution and the interferometric observations with disk models including accretion and scattering. With these models, we are able to reproduce the data set with extended emission arising from structures larger than 10 mas contributing less than 6% of the K-band emission, consistent with little or no envelope remaining for these class II sources [d log(λFλ)/d log λ ≈ -2-0 in the infrared]. The radiation transfer models have inner radii for the dust similar to the geometric models; however, for RY Tau, emission from gas within the inner dust radius contributes significantly to the model flux and visibility at infrared wavelengths. The main conclusion of our modeling is that emission from inner gas disks (between the magnetic truncation radius and the dust destruction radius) can be a significant component in the inner disk flux for sources with large inner dust radii.


The Astrophysical Journal | 2003

Near-Infrared Interferometric Measurements of Herbig Ae/Be Stars

J. A. Eisner; Benjamin F. Lane; R. L. Akeson; Lynne A. Hillenbrand; A. I. Sargent

We have observed the Herbig Ae/Be sources AB Aur, VV Ser, V1685 Cyg (BD +40°4124), AS 442, and MWC 1080 with the Palomar Testbed Interferometer, obtaining the longest baseline near-IR interferometric observations of this class of objects. All of the sources are resolved at 2.2 μm with angular size scales generally 5 mas, consistent with the only previous near-IR interferometric measurements of Herbig Ae/Be stars, by Millan-Gabet and collaborators. We determine the angular size scales and orientations predicted by uniform-disk, Gaussian, ring, and accretion disk models. Although it is difficult to distinguish different radial distributions, we are able to place firm constraints on the inclinations of these models, and our measurements are the first that show evidence for significantly inclined morphologies. In addition, the derived angular sizes for the early-type Herbig Be stars in our sample, V1685 Cyg and MWC 1080, agree reasonably well with those predicted by the face-on accretion disk models used by Hillenbrand and collaborators to explain observed spectral energy distributions. In contrast, our data for the later-type sources AB Aur, VV Ser, and AS 442 are somewhat inconsistent with these models and may be explained better through the puffed-up inner disk models of Dullemond and collaborators.


The Astrophysical Journal | 2005

Constraining the Evolutionary Stage of Class I Protostars: Multiwavelength Observations and Modeling

J. A. Eisner; Lynne A. Hillenbrand; John M. Carpenter; Sebastian Wolf

We present new Keck images at 0.9 μm and OVRO 1.3 mm continuum images of five Class I protostars in the Taurus star-forming region. We analyze these data in conjunction with broadband spectral energy distributions (SEDs) and 8-13 μm spectra from the literature using a Monte Carlo radiative transfer code. By fitting models for the circumstellar dust distributions simultaneously to the scattered light images, millimeter continuum data, and the SEDs, we attempt to distinguish between flared disks, infalling envelopes with outflow cavities, and combinations of disks and envelopes. For each of these circumstellar density distributions, we generate grids of models for varying geometries, dust masses, and accretion rates and determine the best fits by minimizing the residuals between model and data. Comparison of the residuals for best-fit disk, envelope, and disk+envelope models demonstrates that, in general, models incorporating both massive envelopes and massive embedded disks fit the imaging+SED data best. The implied envelope infall rates for these disk+envelope models are generally consistent with infall rates derived by previous investigators, although they are approximately an order of magnitude larger than inner disk accretion rates inferred from recent spectroscopic measurements. In addition, the disk masses inferred from our models are close to or larger than the limit for gravitationally stable disks, indicating that Class I disks may undergo periodic episodes of enhanced accretion, perhaps as a result of gravitational instabilities. An important caveat to these results is that in some cases, no single model can fit all of the imaging and SED data well, suggesting that further refinements to models of the circumstellar dust distributions around Class I sources are necessary. We discuss several potential improvements to the models, as well as new constraints that will become available with upcoming millimeter and infrared facilities.


The Astrophysical Journal | 2009

SPATIALLY RESOLVED SPECTROSCOPY OF SUB-AU-SIZED REGIONS OF T TAURI AND HERBIG AE/BE DISKS

J. A. Eisner; James R. Graham; R. L. Akeson; Joan R. Najita

We present spatially resolved near-IR spectroscopic observations of 15 young stars. Using a grism spectrometer behind the Keck interferometer, we obtained an angular resolution of a few milliarcseconds and a spectral resolution of 230, enabling probes of both gas and dust in the inner disks surrounding the target stars. We find that the angular size of the near-IR emission typically increases with wavelength, indicating hot, presumably gaseous material within the dust sublimation radius. Our data also clearly indicate Brγ emission arising from hot hydrogen gas, and suggest the presence of water vapor and carbon monoxide gas in the inner disks of several objects. This gaseous emission is more compact than the dust continuum emission in all cases. We construct simple physical models of the inner disk and fit them to our data to constrain the spatial distribution and temperature of dust and gas emission components.


The Astrophysical Journal | 2007

Spectrally Dispersed K-Band Interferometric Observations of Herbig Ae/Be Sources: Inner Disk Temperature Profiles

J. A. Eisner; Eugene Chiang; Benjamin F. Lane; R. L. Akeson

We use spectrally dispersed near-IR interferometry data to constrain the temperature profiles of sub-AU-sized regions of 11 Herbig Ae/Be sources. We find that a single-temperature ring does not reproduce the data well. Rather, models incorporating radial temperature gradients are preferred. These gradients may arise in a dusty disk, or may reflect separate gas and dust components with different temperatures and spatial distributions. Comparison of our models with broadband spectral energy distributions suggests the latter explanation. The data support the view that the near-IR emission of Herbig Ae/Be sources arises from hot circumstellar dust and gas in sub-AU-sized disk regions. Intriguingly, our derived temperature gradients appear systematically steeper for disks around higher mass stars. It is not clear, however, whether this reflects trends in relative dust/gas contributions or gradients within individual components.


The Astrophysical Journal | 2007

Near-Infrared Interferometric, Spectroscopic, and Photometric Monitoring of T Tauri Inner Disks

J. A. Eisner; Lynne A. Hillenbrand; Russel J. White; J. S. Bloom; R. L. Akeson; Cullen H. Blake

We present high angular resolution observations with the Keck Interferometer, high-dispersion spectroscopic observations with Keck/NIRSPEC, and near-IR photometric observations from PAIRITEL of a sample of 11 solar-type T Tauri stars in nine systems. We use these observations to probe the circumstellar material within 1 AU of these young stars, measuring the circumstellar-to-stellar flux ratios and angular size scales of the 2.2 μm emission. Our sample spans a range of stellar luminosities and mass accretion rates, allowing investigation of potential correlations between inner disk properties and stellar or accretion properties. We suggest that the mechanism by which the dusty inner disk is truncated may depend on the accretion rate of the source; in objects with low accretion rates, the stellar magnetospheres may truncate the disks, while sublimation may truncate dusty disks around sources with higher accretion rates. We have also included in our sample objects that are known to be highly variable (based on previous photometric and spectroscopic observations), and for several sources, we obtained multiple epochs of spectroscopic and interferometric data, supplemented by near-IR photometric monitoring, to search for inner disk variability. While time-variable veilings and accretion rates are observed in some sources, no strong evidence for inner disk pulsation is found.


The Astrophysical Journal | 2006

Spatially Resolving the Inner Disk of TW Hydrae

J. A. Eisner; Eugene Chiang; Lynne A. Hillenbrand

We present Keck Interferometer observations of TW Hya that spatially resolve its emission at 2 μm wavelength. Analyzing these data together with existing K-band veiling and near-infrared photometric measurements, we conclude that the inner disk consists of optically thin, submicron-sized dust extending from ~4 AU to within 0.06 AU of the central star. The inner disk edge may be magnetospherically truncated. Even if we account for the presence of gas in the inner disk, these small dust grains have survival times against radiation blowout that are orders of magnitude shorter than the age of the system, suggesting continual replenishment through collisions of larger bodies.

Collaboration


Dive into the J. A. Eisner's collaboration.

Top Co-Authors

Avatar

R. L. Akeson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynne A. Hillenbrand

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Millan-Gabet

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge