J. A. Snipes
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. A. Snipes.
Physics of Plasmas | 1994
Ian H. Hutchinson; R. L. Boivin; F. Bombarda; P.T. Bonoli; S. Fairfax; C. Fiore; Jennifer Ann Goetz; S. Golovato; R. Granetz; M. Greenwald; S. Horne; A. Hubbard; James H. Irby; B. LaBombard; B. Lipschultz; E. Marmar; G. McCracken; M. Porkolab; J. E. Rice; J. A. Snipes; Y. Takase; J. L. Terry; S.M. Wolfe; C. Christensen; D. Garnier; M. Graf; T. Hsu; T. Luke; M. May; A. Niemczewski
Early operation of the Alcator‐C‐MOD tokamak [I.H. Hutchinson, Proceedings of IEEE 13th Symposium on Fusion Engineering, Knoxville, TN, edited by M. Lubell, M. Nestor, and S. Vaughan (Institute of Electrical and Electronic Engineers, New York, 1990), Vol. 1, p. 13] is surveyed. Reliable operation, with plasma current up to 1 MA, has been obtained, despite the massive conducting superstructure and the associated error fields. However, vertical disruptions are not slowed by the long vessel time constant. With pellet fueling, peak densities up to 9×1020 m−3 have been attained and ‘‘snakes’’ are often seen. Initial characterization of divertor and scrape‐off layer is presented and indicates approximately Bohm diffusion. The edge plasma shows a wealth of marfe‐like phenomena, including a transition to detachment from the divertor plates with accompanying radiative divertor regions. Energy confinement generally appears to exceed the expectations of neo‐Alcator scaling. A transition to Ohmic H mode has been observed. Ion cyclotron heating experiments have demonstrated good power coupling, in agreement with theory.
Nuclear Fusion | 1989
J.A. Wesson; R.D. Gill; M. Hugon; F.C. Schüller; J. A. Snipes; David Ward; D.V. Bartlett; D.J. Campbell; P.A. Duperrex; A.W. Edwards; R. Granetz; N. Gottardi; T. C. Hender; E. Lazzaro; P.J. Lomas; N.J. Lopes Cardozo; K.F. Mast; M. F. F. Nave; Neil A. Salmon; P. Smeulders; P.R. Thomas; B.J.D. Tubbing; M.F. Turner; A. Weller
In JET, both high density and low-q operation are limited by disruptions. The density limit disruptions are caused initially by impurity radiation. This causes a contraction of the plasma temperature profile and leads to an MHD unstable configuration. There is evidence of magnetic island formation resulting in minor disruptions. After several minor disruptions, a major disruption with a rapid energy quench occurs. This event takes place in two stages. In the first stage there is a loss of energy from the central region. In the second stage there is a more rapid drop to a very low temperature, apparently due to a dramatic increase in impurity radiation. The final current decay takes place in the resulting cold plasma. During the growth of the MHD instability the initially rotating mode is brought to rest. This mode locking is believed to be due to an electromagnetic interaction with the vacuum vessel and external magnetic field asymmetries. The low-q disruptions are remarkable for the precision with which they occur at qψ = 2. These disruptions do not have extended precursors or minor disruptions. The instability grows and locks rapidly. The energy quench and current decay are generally similar to those of the density limit.
Journal of Nuclear Materials | 1997
B. LaBombard; Jennifer Ann Goetz; Ian H. Hutchinson; D. Jablonski; J. Kesner; C. Kurz; B. Lipschultz; G. McCracken; A. Niemczewski; J. L. Terry; A. J. Allen; R. L. Boivin; F. Bombarda; P.T. Bonoli; C. Christensen; C. Fiore; D. Garnier; S. Golovato; R. Granetz; M. Greenwald; S. Horne; A. Hubbard; James H. Irby; D. Lo; D. Lumma; E. Marmar; M. May; A. Mazurenko; R. Nachtrieb; H. Ohkawa
Abstract Transport physics in the divertor and scrape-off layer of Alcator C-Mod is investigated for a wide range of plasma conditions. Parallel (∥) transport topics include: low recycling, high-recycling, and detached regimes, thermoelectric currents, asymmetric heat fluxes driven by thermoelectric currents, and reversed divertor flows. Perpendicular (⊥) transport topics include: expected and measured scalings of ⊥ gradients with local conditions, estimated χ⊥ profiles and scalings, divertor neutral retention effects, and L-mode/H-mode effects. Key results are: (i) classical ∥ transport is obeyed with ion-neutral momentum coupling effects, (ii) ⊥ heat transport is proportional to local gradients, (iii) χ⊥ αTe−0.6 n−0.6 L−0.7 in L-mode, insensitive to toroidal field, (iv) χ⊥ is dependent on divertor neutral retention, (v) H-mode transport barrier effects partially extend inside the SOL, (vi) inside/outside divertor asymmetries may be caused by a thermoelectric instability, and (vii) reversed ∥ flows depend on divertor asymmetries and their implicit ionization source imbalances.
Physics of Plasmas | 1999
M. Greenwald; R. L. Boivin; P.T. Bonoli; R. Budny; C. Fiore; Jennifer Ann Goetz; R. Granetz; A. Hubbard; Ian H. Hutchinson; James H. Irby; B. LaBombard; Y. Lin; B. Lipschultz; E. Marmar; A. Mazurenko; D. A. Mossessian; T. Sunn Pedersen; C. S. Pitcher; M. Porkolab; J. E. Rice; W. Rowan; J. A. Snipes; G. Schilling; Y. Takase; J. L. Terry; Scot A. Wolfe; J. Weaver; B. Welch; Stephen James Wukitch
Regimes of high-confinement mode have been studied in the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994)]. Plasmas with no edge localized modes (ELM-free) have been compared in detail to a new regime, enhanced Dα (EDA). EDA discharges have only slightly lower energy confinement than comparable ELM-free ones, but show markedly reduced impurity confinement. Thus EDA discharges do not accumulate impurities and typically have a lower fraction of radiated power. The edge gradients in EDA seem to be relaxed by a continuous process rather than an intermittent one as is the case for standard ELMy discharges and thus do not present the first wall with large periodic heat loads. This process is probably related to fluctuations seen in the plasma edge. EDA plasmas are more likely at low plasma current (q>3.7), for moderate plasma shaping, (triangularity ∼0.35–0.55), and for high neutral pressures. As observed in soft x-ray emission, the pedestal width is found to scale with the same parameters that determine the EDA/ELM-free boundary.
Nuclear Fusion | 1988
J. A. Snipes; D.J. Campbell; P.S. Haynes; T. C. Hender; M. Hugon; P.J. Lomas; N.J. Lopes Cardozo; M. F. F. Nave; F.C. Schüller
Oscillating MHD modes in JET are often observed to slow down as they grow and generally stop rotating (lock) when the amplitude exceeds a critical value, then continue to grow to large amplitudes (br/Bθ ~ 1%). The mode can grow early in the current rise or after perturbations, such as a pellet injection or a large sawtooth collapse, and maintain a large amplitude throughout the remainder of the discharge. Such large amplitude quasistationary MHD modes can apparently have profound effects on the plasma, including stopping central ion plasma rotation, reducing the amplitude and changing the shape of sawteeth, flattening the temperature profile around resonant q surfaces and reducing the stored energy. Perhaps most important, large amplitude locked modes are precursors to most disruptions. Some large amplitude modes can be avoided by proper programming of the q evolution. The apparent reasons for the mode locking in a particular location are discussed and a comparison with theory is made.
Physics of Plasmas | 2005
B. LaBombard; J. E. Rice; A. Hubbard; J.W. Hughes; M. Greenwald; R. Granetz; James H. Irby; Y. Lin; B. Lipschultz; E. Marmar; K. Marr; D. A. Mossessian; R.R. Parker; W. Rowan; N. Smick; J. A. Snipes; J. L. Terry; S.M. Wolfe; S.J. Wukitch
Factor of ∼2 higher power thresholds for low- to high-confinement mode transitions (L-H) with unfavorable x-point topologies in Alcator C-Mod [Phys. Plasmas 1, 1511 (1994)] are linked to flow boundary conditions imposed by the scrape-off layer (SOL). Ballooning-like transport drives flow along magnetic field lines from low- to high-field regions with toroidal direction dependent on upper/lower x-point balance; the toroidal rotation of the confined plasma responds, exhibiting a strong counter-current rotation when B×∇B points away from the x point. Increased auxiliary heating power (rf, no momentum input) leads to an L-H transition at approximately twice the edge electron pressure gradient when B×∇B points away. As gradients rise prior to the transition, toroidal rotation ramps toward the co-current direction; the H mode is seen when the counter-current rotation imposed by the SOL flow becomes compensated. Remarkably, L-H thresholds in lower-limited discharges are identical to lower x-point discharges; SOL...
Physics of Plasmas | 1995
B. LaBombard; Jennifer Ann Goetz; C. Kurz; D. Jablonski; B. Lipschultz; G. McCracken; A. Niemczewski; R. L. Boivin; F. Bombarda; C. Christensen; S. Fairfax; C. Fiore; D. Garnier; M. Graf; S. Golovato; R. Granetz; M. Greenwald; S. Horne; A. Hubbard; Ian H. Hutchinson; James H. Irby; J. Kesner; T. Luke; E. Marmar; M. May; P. O’Shea; M. Porkolab; J. Reardon; J. E. Rice; J. Schachter
Detailed measurements and transport analysis of divertor conditions in Alcator C‐Mod [Phys. Plasmas 1, 1511 (1994)] are presented for a range of line‐averaged densities, 0.7<ne<2.2×1020 m−3. Three parallel heat transport regimes are evident in the scrape‐off layer: sheath‐limited conduction, high‐recycling divertor, and detached divertor, which can coexist in the same discharge. Local cross‐field pressure gradients are found to scale simply with a local electron temperature. This scaling is consistent with classical electron parallel conduction being balanced by anomalous cross‐field transport (χ⊥∼0.2 m2 s−1) proportional to the local pressure gradient. A 60%–80% of divertor power is radiated in attached discharges, approaching 100% in detached discharges. Detachment occurs when the heat flux to the plate is low and the plasma pressure is high (Te∼5 eV). High neutral pressures in the divertor are nearly always present (1–20 mTorr), sufficient to remove parallel momentum via ion–neutral collisions.
Journal of Nuclear Materials | 1995
B. Lipschultz; Jennifer Ann Goetz; B. LaBombard; G. McCracken; J. L. Terry; M. Graf; R. Granetz; D. Jablonski; C. Kurz; A. Niemczewski; J. A. Snipes
The achievement of large volumetric power losses (dissipation) in the Alcator C-Mod divertor region is demonstrated in two operational modes: radiative divertor and detached divertor. During radiative divertor operation, the fraction of SOL power lost by radiation is P R /P SOL 0.8 with single null plasmas, n e < 2 × 10 20 m −3 and I p < 1 MA. THESE PLASMAS SOMETIMES HAVE VERY HIGH RECYCLING, WITH N e, div ≤ 6 x 10 20 m −3 . As the divertor radiation and density increase, the plasma eventually detaches abruptly from the divertor plates: I SAT drops at the target and the divertor radiation peak moves to the X-point region. Probe measurements at the divertor plate show that the transition occurs when T e 5 eV. The critical n e for detachment depends linearly on the input power. This abrupt divertor detachment is preceded by a comparatively long period (∼ 1-200 ms) where a partial detachment is observed to grow at the outer divertor plate
Nuclear Fusion | 2004
J. E. Rice; W.D. Lee; E. Marmar; P.T. Bonoli; R. Granetz; M. Greenwald; A. Hubbard; Ian H. Hutchinson; J. Irby; Y. Lin; D. A. Mossessian; J. A. Snipes; S. M. Wolfe; S.J. Wukitch
Anomalous momentum transport has been observed in Alcator C-Mod tokamak plasmas. The time evolution of core impurity toroidal rotation velocity profiles has been measured with a tangentially viewing crystal x-ray spectrometer array. Following the L-mode to EDA (enhanced Dα) H-mode transition in both Ohmic and ion cyclotron range of frequencies heated discharges, the ensuing co-current toroidal rotation velocity, which is generated in the absence of any external momentum source, is observed to propagate in from the edge plasma to the core with a timescale of the order of the observed energy confinement time, but much less than the neo-classical momentum confinement time. The ensuing steady state toroidal rotation velocity profiles in EDA H-mode plasmas are relatively flat, with V ~ 50 km s−1, and the momentum transport can be simulated using a simple diffusion model. Assuming that the L–H transition produces an instantaneous edge source of toroidal torque (which disappears at the H- to L-mode transition), the momentum transport may be characterized by a diffusivity, with values of ~0.07 m2 s−1 during EDA H-mode and ~0.2 m2 s−1 in L-mode. These values are large compared to the calculated neo-classical momentum diffusivities, which are of the order of 0.003 m2 s−1. Velocity profiles of ELM-free H-mode plasmas are centrally peaked (with V(0) exceeding 100 km s−1 in some cases), which suggests the presence of an inward momentum pinch; the observed profiles are consistent with simulations including an edge inward convection velocity of ~10 m s−1. In EDA H-mode discharges which develop internal transport barriers, the velocity profiles become hollow in the centre, indicating the presence of a negative radial electric field well in the vicinity of the barrier foot. Upper single null diverted and inner wall limited L-mode discharges exhibit strong counter-current rotation (with V(0)~−60 km s−1 in some cases), which may be related to the observed higher H-mode power threshold in these configurations. For plasmas with locked modes, the toroidal rotation is observed to cease (V ≤ 5 km s−1).
Nuclear Fusion | 2001
J. E. Rice; R. L. Boivin; P.T. Bonoli; J.A. Goetz; R. Granetz; M. Greenwald; Ian H. Hutchinson; E. Marmar; G. Schilling; J. A. Snipes; S. M. Wolfe; S.J. Wukitch; C. Fiore; J. Irby; D. A. Mossessian; M. Porkolab
Co-current central impurity toroidal rotation has been observed in Alcator C-Mod plasmas with on-axis ICRF heating. The rotation velocity increases with plasma stored energy and decreases with plasma current. Very similar behaviour has been seen during ohmic H modes, which suggests that the rotation, generated in the absence of an external momentum source, is not mainly an ICRF effect. A scan of ICRF resonance location across the plasma has been performed in order to investigate possible influences on the toroidal rotation. With a slight reduction of toroidal magnetic field from 4.7 to 4.5 T and a corresponding shift of the ICRF resonance from r/a = -0.36 to -0.48, the central toroidal rotation significantly decreased together with the formation of an internal transport barrier (ITB). During the ITB phase, electrons and impurities peaked continuously for |r/a| ≤ 0.5. Comparison of the observed rotation and neoclassical predictions indicates that the core radial electric field changes from positive to negative during the ITB phase. Similar rotation suppression and ITB formation have been observed during some ohmic H mode discharges.