Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. A. Sordo is active.

Publication


Featured researches published by J. A. Sordo.


Archive | 1993

Research in atomic structure

Serafin Fraga; Mariusz Klobukowski; J. Muszynska; E. San Fabian; K. M. S. Saxena; J. A. Sordo; Tomás L. Sordo

Theoretical Foundation.- 1 Hamiltonian Operator and Eigenvalue Equations.- 1.1 Hamiltonian operator.- 1.1.1 Extended Breit Hamiltonian operator.- 1.1.2 Generalized Hamiltonian operator.- 1.2 Eigenvalue equations.- Basic Theoretical Formulation.- 2 Angular Functions: Coupling of Angular Momenta.- 2.1 One-electron functions.- 2.2 SL-functions.- 2.3 JMJ- and FMF-functions.- 2.4 Selection of functions.- 3 Tensor-Operator Formulation.- 3.1 Tensor operators.- 3.2 Wigner-Eckart theorem.- 3.3 Reduced matrix elements.- 3.4 Matrix elements.- Application of the Basic Formulation.- 4 Transformation of Operators to Tensor Form.- 4.1 Basic operators.- 4.1.1 Operators s(1), ?(1) and C(k).- 4.1.2 Other common operators.- 4.2 Transformation rules.- 4.3 Application.- 4.4 Summary.- 5 Matrix Elements.- 5.1 General formulation.- 5.2 General expressions.- 5.2.1. SMSLML-coupling.- 5.2.2. JMJ-coupling.- 5.2.3. FMF-coupling.- 5.3 Examples for specific interactions.- 6 Summary of Theoretical Results.- 6.1 Electronic energy.- 6.2 Mass variation.- 6.3 Specific mass effect.- 6.4 One-electron Darwin correction.- 6.5 Two-electron Darwin correction.- 6.6 Electron spin-spin contact interaction.- 6.7 Orbit-orbit interaction.- 6.8 Spin-orbit coupling.- 6.9 Spin-spin dipole interaction.- 6.10 Magnetic dipole and Fermi contact interactions.- 6.11 Electric quadrupole coupling.- 6.12 Magnetic octupole coupling.- 6.13 Zeeman effect (low field).- 6.14 Zeeman effect (high field).- 6.15 Zeeman effect (very high field).- 6.16 Stark effect.- 6.17 Nuclear-mass dependent orbit-orbit interaction.- 6.18 Nuclear-mass dependent spin-orbit coupling (electron spin).- 6.19 Nuclear-mass dependent spin-orbit coupling (nuclear spin).- Implementation.- 7 Practical Details.- 7.1 Selection of configurations.- 7.2 Determination of radial functions.- 7.3 Selection rules.- 7.4 Mass corrections.- 8 Numerical Examples.- 8.1 Accurate energies.- 8.2 SLJ energy levels.- 8.3 Hyperfine-structure splittings.- 8.4 Nuclear-mass dependent corrections.- References.- Reference texts.- Data sources.- Units and Constants.- Constants.- Units.- Notation and Symbols.


Computer Physics Communications | 1987

Research in atomic structure: A configuration interaction program with relativistic corrections

Serafin Fraga; Mariusz Klobukowski; Janina Muszynska; K. M. S. Saxena; J. A. Sordo; John D. Climenhaga; Paul Clark

Abstract The RIAS computer program implements the recent formulation for the evaluation of the matrix elements of the complete atomic Hamiltonian operator (S. Fraga et al., Phys. Rev. A 34 (1986) 23). The SL, J or F levels may be obtained by diagonalization of the interaction energy matrix constructed from appropriate SMSLML functions. The program allows for accurate determination of the energy levels of any neutral or ionized atomic system.


Archive | 1993

Transformation of Operators to Tensor Form

Serafin Fraga; Mariusz Klobukowski; J. Muszynska; E. San Fabian; K. M. S. Saxena; J. A. Sordo; T. L. Sordo

The evaluation of the matrix elements of the Hamiltonian operator through the use of the reduced matrix elements formulation presented in the preceding Chapter requires that its terms be transformed into tensor form (see Section 4.2).


Archive | 1993

Summary of Theoretical Results

Serafin Fraga; Mariusz Klobukowski; J. Muszynska; E. San Fabian; K. M. S. Saxena; J. A. Sordo; T. L. Sordo

The complete formulas for the matrix elements of all the terms of the Hamiltonian operator are presented below.


Archive | 1993

Angular Functions: Coupling of Angular Momenta

Serafin Fraga; Mariusz Klobukowski; J. Muszynska; E. San Fabian; K. M. S. Saxena; J. A. Sordo; T. L. Sordo

The HF functions are constructed as combinations of Slater determinants built from spin-orbitals defined by


Archive | 1993

Hamiltonian Operator and Eigenvalue Equation

Serafin Fraga; Mariusz Klobukowski; J. Muszynska; E. San Fabian; K. M. S. Saxena; J. A. Sordo; T. L. Sordo


Archive | 1993

Tensor-Operator Formulation

Serafin Fraga; Mariusz Klobukowski; J. Muszynska; E. San Fabian; K. M. S. Saxena; J. A. Sordo; T. L. Sordo

psi n\ell m\ell ms = \phi n\ell m\ell \eta ms


Journal of the American Chemical Society | 1985

Theoretical study of the tautomeric equilibrium of 4(1H)-pyridinone in solution

J. A. Sordo; Mariusz Klobukowski; Serafin Fraga


Physical Review A | 1986

Matrix elements of the Breit Hamiltonian

Serafin Fraga; Mariusz Klobukowski; J. Muszynska; K. M. S. Saxena; J. A. Sordo

(1) where \({\eta _{{m_s}}}\) is the spin function (either α or β) and the HF orbital \({\phi _{n\ell }}_{{m_\ell }}\) may be expressed as


Canadian Journal of Physics | 1985

A theoretical simulation of bulk water: the effect of the dispersion-energy contribution

J. A. Sordo; Mariusz Klobukowski; Serafin Fraga

Collaboration


Dive into the J. A. Sordo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge