Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Alistair Crame is active.

Publication


Featured researches published by J. Alistair Crame.


Paleobiology | 2000

Evolution of taxonomic diversity gradients in the marine realm: evidence from the composition of Recent bivalve faunas

J. Alistair Crame

Abstract A major new inventory of living marine Bivalvia (Mollusca) is based on 29 regional faunas. These again pick out strong latitudinal and longitudinal gradients in taxonomic diversity, but there are indications that the patterns are not so regular as previously thought. There are signs of asymmetry between the Northern and Southern Hemisphere latitudinal gradients, with the former tending to be more regular than the latter. Northern gradients are also characterized by a marked inflection at approximately 30°N, and the three Australian provinces seem to form a distinct “hotspot” in the Southern Hemisphere. The larger of the two tropical high-diversity foci (the southern China-Indonesia-NE Australia one) appears to be much more nearly arcuate in plan view than oval and is closely associated with the worlds richest development of coral reefs. A taxonomic and stratigraphic analysis reveals that the steepest latitudinal gradients are associated with the youngest bivalve clades. The most striking pattern is that shown by the heteroconchs, an essentially infaunal taxon that radiated extensively throughout the Cenozoic era. Steep gradients are also characteristic of the relatively young anomalodesmatan and arcoid clades and, somewhat surprisingly, the predominantly epifaunal pteriomorphs. Although the latter taxon falls within an older (i.e., “late Paleozoic–Jurassic”) group of clades, it is apparent that certain elements within it (and in particular the Pectinidae) radiated extensively in the latest Mesozoic–Cenozoic. A small but significant component of the later stages of the adaptive radiation of the Bivalvia comprised epifaunal taxa. The presence of the steepest latitudinal gradients in the youngest clades provides further evidence that the Tropics have served as a major center of evolutionary innovation. Even though some sort of retraction mechanism cannot be completely ruled out, these gradients are most likely the product of primary radiations. Clade history can be an important determinant of contemporary large-scale biodiversity patterns. The markedly lower diversity of some bivalve clades, such as the heteroconchs, in the high-latitude and polar regions may simply reflect the fact that they are not yet fully established there. In a way that is reminiscent of the onshore-offshore radiation of certain benthic marine invertebrate taxa, it may take periods of tens or even hundreds of millions of years for bivalve clades to disseminate fully across the earths surface. The persistent spread of taxa from low- to high-latitude regions should perhaps come as no great surprise, as the tropical ocean is very much older than either of the polar ones. The late Cretaceous–Cenozoic evolutionary radiation of the Bivalvia was accompanied by a marked deterioration in global climates, and many new groups have yet to be fully assimilated into cool- and cold-water benthic ecosystems.


Geological Society, London, Special Publications | 1989

The origin of the Southern Ocean marine fauna

Andrew Clarke; J. Alistair Crame

Abstract Current knowledge of the break-up of Gondwana during the Tertiary indicates that shallow water marine habitats may have been present continuously, and on occasions were considerably more extensive than at present. Although direct fossil evidence is sparse after the Eocene, geophysical evidence suggests that shallow waters have been present since the late Mesozoic, and possibly much longer. The break-up of Gondwana was accompanied by a more or less steady lowering of both surface and bottom temperatures in the Southern Ocean from about 15°C in the Late Cretaceous to the present range of roughly +2 to −1.8°C. Microfossils in deep-sea drilling cores indicate that temperature drops were particularly sharp in the early Oligocene (c. 38 Ma), mid-Miocene (10–14 Ma) and Pliocene (c. 4 Ma BP). Geological evidence suggests that the Drake Passage opened, and the present oceanographic regime established, about 25–30 Ma BP. This is now known to be about the time of full-scale development of the East Antarctic ice cap. Subsequently ice sheets extended across, and deeply eroded, the continental shelves but the effects of these glacial maxima on the marine biota are not fully understood. Late Cretaceous/early Tertiary marine fossils from the James Ross Island group indicate a diverse shallow water marine fauna, including two groups notably lacking in diversity in the living fauna: decapods and teleost fish. In several genera occurrences in this fauna predate first occurrences in lower latitudes by as much as 40 Ma, suggesting the possibility that a number of groups originated at high southern latitudes. The living fauna exhibits a high biomass in many areas, and within-site diversity can be as high as anywhere in the world. Some individual taxonomic groups, however, (notably bivalves and gastropods) have a lower diversity than in the tropics, supporting the concept of a latitudinal cline in diversity. Studies of physiological adaptation to temperature suggest that the decline in seawater temperature during the Cenozoic has not presented a particularly severe evolutionary problem. The reasons for the absence of large decapods and the low diversity of fish in the present fauna are unclear. Most of the biological features of the modern fauna are more likely a response to the seasonality of the ecosystem rather than low temperature per se. Overall the evidence suggests that the present Southern Ocean shallow water marine fauna largely evolved in situ, having been present since at least the Late Cretaceous, and possibly much longer. Some groups have invaded, for example along the Scotia arc, but the isolation of the Southern Ocean by the present oceanographic regime and the limited dispersal ability of many forms means that exchange with lower latitudes is very slow.


Antarctic Science | 2004

Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf

Andrew Clarke; Richard B. Aronson; J. Alistair Crame; Josep Maria Gili; Daniel B. Blake

The modern benthic fauna of the Antarctic continental shelf is characterized by the lack of active, skeleton-breaking (durophagous) predators such as crabs, lobsters and many fish, and the dominance in many areas of epifaunal suspension feeders. It has often been remarked that these ecological characteristics give the fauna a distinctly Palaeozoic feel, with the assumption that it may be an evolutionary relic. We now know that this is not so, and fossil evidence shows clearly that many of the taxa and life-styles that are absent now were previously present. The modern fauna has been shaped by a number of factors, important among which have been oceanographic changes and the onset of Cenozoic glaciation. Sea-water cooling, and periodic fragmentation of ranges and bathymetric shifts in distribution driven by variability in the size and extent of the continental ice cap on Milankovitch frequencies will all have caused both extinction and allopatric speciation. The modern glacial setting with relatively low terrestrial impact away from immediate coastal regions, and scouring by icebergs are the key factors influencing the ecology and population dynamics for the modern Antarctic benthos.


Ecology | 2005

LARGE-SCALE BIOGEOGRAPHIC PATTERNS IN MARINE MOLLUSKS: A CONFLUENCE OF HISTORY AND PRODUCTIVITY?

Michael A. Rex; J. Alistair Crame; Carol T. Stuart; Andrew Clarke

Large-scale biogeographic patterns in marine systems are considerably less well documented and understood than those in terrestrial systems. Here, we synthesize recent evidence on latitudinal and bathymetric gradients of species diversity in benthic mollusks, one of the most diverse and intensively studied marine taxa. Latitudinal gradients in coastal faunas show poleward declines in diversity, but the patterns are highly asymmetrical between hemispheres, and irregular both within and among regions. The extensive fossil record of mollusks reveals that latitudinal gradients have become steeper during the Neogene, partly because of a rapid diversification in tropical coral reefs and their associated biotas. Much of the inter-regional variation in contemporary latitudinal trends depends on the longitudinal distribution of reefs and major Neogene vicariant events. Thus, coastal faunas reveal a strong evolutionary–historical legacy. Bathymetric and latitudinal gradients in the deep ocean suggest that molluscan diversity is a function of the rate of nutrient input from surface production. Diversity may be depressed at abyssal depths because of extremely low rates of organic carbon flux, and at upper bathyal depths and high latitudes by pulsed nutrient loading. While the deep-sea environment is not conducive to fossilization, relationships between local and regional diversity, and the distribution and age of higher taxa indicate an evolutionary signal in present-day diversity gradients. Marine invertebrate communities offer tremendous potential to determine the relative importance of history and ecological opportunity in shaping large-scale patterns of species diversity.


Archive | 1997

Marine Biodiversity: Diversity, latitude and time: Patterns in the shallow sea

Andrew Clarke; J. Alistair Crame

Abstract The latitudinal cline in diversity is a well established, though poorly understood, feature of terrestrial communities and although it is often assumed that a similar cline is to be found in the sea, the evidence for this is still equivocal. Attempts to develop an overall picture of diversity in the sea are made difficult by the small number of key studies, the varied sampling protocols employed in these studies, the different measures of diversity utilised and the varying levels of taxonomic resolution. Nevertheless, there is clear evidence for greater species richness in the tropics for several shallow-water taxa that depend on calcareous skeletons, including gastropod and bivalve molluscs, foraminifera and hermatypic corals. There is also an increasing body of evidence for a latitudinal diversity cline in the deep sea, at least in the northern hemisphere. However, any cline in species richness in the northern hemisphere will, in part, be a necessary consequence of the depauperate Arctic fauna and the intense species richness of the Indo-West Pacific. The Southern Ocean is now known to support a rich and diverse shallow-water benthic fauna, the striking contrast to the Arctic being the result of a very different tectonic and evolutionary history. Whereas the Arctic marine system is very young and still being colonised, the Southern Ocean marine fauna has essentially evolved in situ , and has been influenced by a dynamic glacial and climatic history.


Paleobiology | 2002

Evolution of taxonomic diversity gradients in the marine realm: a comparison of Late Jurassic and Recent bivalve faunas

J. Alistair Crame

We still have much to learn about the evolution of taxonomic diversity gradients through geologic time. For example, have latitudinal gradients always been as steep as they are now, or is this a phenomenon linked to some form of Cenozoic global climatic differentiation? The fossil record offers potential to address this sort of problem, and this study reconstructs latitudinal diversity gradients for the last (Tithonian) stage of the Jurassic period using marine bivalves. At this time of relative global warmth, bivalves were cosmopolitan in their distribution and the commonest element within macrobenthic assemblages. Analysis of 31 regional bivalve faunas demonstrates that Tithonian latitudinal gradients were present in both hemispheres, though on a much smaller magnitude than today. The record of the Northern Hemisphere gradient is more complete and shows a steep fall in values at the tropical/temperate boundary; the Southern Hemisphere gradient exhibits a more regular decline in diversity with increasing latitude. Tithonian latitudinal gradients were underpinned by a tropical bivalve fauna that comprises almost equal numbers of epifaunal and infaunal taxa. The epifaunal component was dominated by three pteriomorph families, the Pectinidae, Limidae and Ostreidae, that may be regarded as a long-term component of tropical bivalve diversity. Of the mixture of older and newer “heteroconch” families that formed the bulk of the infaunal component, the latter radiated spectacularly through the Late Cretaceous and Cenozoic to dominate tropical bivalve faunas at the present day. This pulse of heteroconch diversification, which was a major cause of the steepening of the bivalve latitudinal gradient, provides important evidence that rates of speciation may be negatively correlated with latitude. Nevertheless, we cannot exclude the possibility that elevated extinction rates in the highest latitudes also contributed to the marked steepening of bivalve latitudinal gradients over the last 150 Myr. Rates of extinction within epifaunal bivalve taxa appear to have been higher in these regions through the Cretaceous period, but this was largely before any significant global climatic deterioration. Infaunal bivalve clades have had differential success over this time period in the polar regions. Whereas, in comparison with the Tropics, heteroconchs are very much reduced in numbers today, the anomalodesmatans are much better represented, and the protobranchs have positively thrived. We are beginning to appreciate that low temperature per se may not be a primary cause of elevated rates of extinction. Food supply may be an equally important control on both rates of speciation and extinction; those bivalves that have been able to adapt to the extreme seasonality of food supply have flourished in the polar regions.Abstract We still have much to learn about the evolution of taxonomic diversity gradients through geologic time. For example, have latitudinal gradients always been as steep as they are now, or is this a phenomenon linked to some form of Cenozoic global climatic differentiation? The fossil record offers potential to address this sort of problem, and this study reconstructs latitudinal diversity gradients for the last (Tithonian) stage of the Jurassic period using marine bivalves. At this time of relative global warmth, bivalves were cosmopolitan in their distribution and the commonest element within macrobenthic assemblages. Analysis of 31 regional bivalve faunas demonstrates that Tithonian latitudinal gradients were present in both hemispheres, though on a much smaller magnitude than today. The record of the Northern Hemisphere gradient is more complete and shows a steep fall in values at the tropical/temperate boundary; the Southern Hemisphere gradient exhibits a more regular decline in diversity with increasing latitude. Tithonian latitudinal gradients were underpinned by a tropical bivalve fauna that comprises almost equal numbers of epifaunal and infaunal taxa. The epifaunal component was dominated by three pteriomorph families, the Pectinidae, Limidae and Ostreidae, that may be regarded as a long-term component of tropical bivalve diversity. Of the mixture of older and newer “heteroconch” families that formed the bulk of the infaunal component, the latter radiated spectacularly through the Late Cretaceous and Cenozoic to dominate tropical bivalve faunas at the present day. This pulse of heteroconch diversification, which was a major cause of the steepening of the bivalve latitudinal gradient, provides important evidence that rates of speciation may be negatively correlated with latitude. Nevertheless, we cannot exclude the possibility that elevated extinction rates in the highest latitudes also contributed to the marked steepening of bivalve latitudinal gradients over the last 150 Myr. Rates of extinction within epifaunal bivalve taxa appear to have been higher in these regions through the Cretaceous period, but this was largely before any significant global climatic deterioration. Infaunal bivalve clades have had differential success over this time period in the polar regions. Whereas, in comparison with the Tropics, heteroconchs are very much reduced in numbers today, the anomalodesmatans are much better represented, and the protobranchs have positively thrived. We are beginning to appreciate that low temperature per se may not be a primary cause of elevated rates of extinction. Food supply may be an equally important control on both rates of speciation and extinction; those bivalves that have been able to adapt to the extreme seasonality of food supply have flourished in the polar regions.


Trends in Ecology and Evolution | 1993

Latitudinal range fluctuations in the marine realm through geological time

J. Alistair Crame

Our concept of polar marine faunas as having evolved in comparative isolation over long periods may need to be revised. New evidence from the Southern Ocean, in particular, suggests that a number of taxa may have had connections with lower-latitude regions in the comparatively recent past. Opportunities for high-low latitude faunal interchange were enhanced considerably by reduced meridional temperature gradients over the greater part of the last 100 million years. Indeed, such is the nature and scope of past latitudinal range fluctuations that they could be major determinants of regional patterns in taxonomic diversity.


Philosophical Transactions of the Royal Society B | 2010

Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas

Andrew Clarke; J. Alistair Crame

Ecologists have long been fascinated by the flora and fauna of extreme environments. Physiological studies have revealed the extent to which lifestyle is constrained by low temperature but there is as yet no consensus on why the diversity of polar assemblages is so much lower than many tropical assemblages. The evolution of marine faunas at high latitudes has been influenced strongly by oceanic cooling during the Cenozoic and the associated onset of continental glaciations. Glaciation eradicated many shallow-water habitats, especially in the Southern Hemisphere, and the cooling has led to widespread extinction in some groups. While environmental conditions at glacial maxima would have been very different from those existing today, fossil evidence indicates that some lineages extend back well into the Cenozoic. Oscillations of the ice-sheet on Milankovitch frequencies will have periodically eradicated and exposed continental shelf habitat, and a full understanding of evolutionary dynamics at high latitude requires better knowledge of the links between the faunas of the shelf, slope and deep-sea. Molecular techniques to produce phylogenies, coupled with further palaeontological work to root these phylogenies in time, will be essential to further progress.


Geology | 2014

A cool temperate climate on the Antarctic Peninsula through the latest Cretaceous to early Paleogene

David B. Kemp; Stuart A. Robinson; J. Alistair Crame; Jane M Francis; Jon R. Ineson; Rowan J. Whittle; Vanessa C. Bowman; Charlotte L O'Brien

Constraining past fl uctuations in global temperatures is central to our understanding of the Earth’s climatic evolution. Marine proxies dominate records of past temperature reconstructions, whereas our understanding of continental climate is relatively poor, particularly in high-latitude areas such as Antarctica. The recently developed MBT/CBT (methylation index of branched tetraethers/ cyclization ratio of branched tetraethers) paleothermometer offers an opportunity to quantify ancient continental climates at temporal resolutions typically not afforded by terrestrial macrofl oral proxies. Here, we have extended the application of the MBT/CBT proxy into the Cretaceous by presenting paleotemperatures through an expanded sedimentary succession from Seymour Island, Antarctica, spanning the latest Maastrichtian and Paleocene. Our data indicate the existence of a relatively stable, persistently cool temperate climate on the Antarctic Peninsula across the Cretaceous-Paleogene boundary. These new data help elucidate the climatic evolution of Antarctica across one of the Earth’s most pronounced biotic reorganizations at the Cretaceous-Paleogene boundary, prior to major icesheet development in the late Paleogene. Our work emphasizes the likely existence of temporal and/or spatial heterogeneities in climate of the southern high latitudes during the early Paleogene.


Geological Society, London, Special Publications | 2006

Palaeobiological significance of high-latitude Late Cretaceous vertebrate fossils from the James Ross Basin, Antarctica

James E. Martin; J. Alistair Crame

Abstract A diverse marine assemblage of vertebrate fossils has been collected in recent years under the auspices of the British Antarctic Survey from Seymour, James Ross and Vega islands east of the Antarctic Peninsula. The specimens were derived from the Late Campanian Santa Marta Formation, Early Maastrichtian Snow Hill Island Formation and the Early-Late Maastrichtian López de Bertodano Formation. Sharks, teleosts, plesiosaurs and mosasaurs are represented, but birds and sea turtles are absent from the BAS collections; neornithine birds have been previously reported from the Late Cretaceous deposits of Antarctica. Shark teeth are relatively abundant, but teleosts are seemingly under-represented. Plesiosaurs (Elasmosauridae) are more abundant and complete than mosasaurs, and juveniles of both marine reptile groups are relatively common. The marine lizards, mosasaurs, are taxonomically diverse as elsewhere in the world, but with relatively few individuals compared to the plesiosaurs, which are taxonomically limited. A converse relationship normally occurs at other lower latitude Late Cretaceous localities. Some of these abundances and appearances may be due to collection bias, particularly due to difficult collecting conditions and weathering, but certain distributions may be the result of high latitudes.

Collaboration


Dive into the J. Alistair Crame's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Clarke

British Antarctic Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katrin Linse

British Antarctic Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon R. Ineson

Geological Survey of Denmark and Greenland

View shared research outputs
Researchain Logo
Decentralizing Knowledge