J. Arie Vonk
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Arie Vonk.
Advances in Ecological Research | 2011
Christian Mulder; Alice Boit; Michael Bonkowski; Peter C. De Ruiter; Giorgio Mancinelli; Marcel G. A. van der Heijden; Harm J. van Wijnen; J. Arie Vonk; M. Rutgers
Summary 1. New patterns and trends in land use are becoming increasingly evident in Europes heavily modified landscape and else whereas sustainable agriculture and nature restoration are developed as viable long-term alternatives to intensively farmed arable land. The success of these changes depends on how soil biodiversity and processes respond to changes in management. To improve our understanding of the community structure and ecosystem functioning of the soil biota, we analyzed abiotic variables across 200 sites, and biological variables across 170 sites in The Netherlands, one of the most intensively farmed countries. The data were derived from the Dutch Soil Quality Network (DSQN), a long-term monitoring framework designed to obtain ecological insight into soil types ( STs ) and ecosystem types ( ETs ). 2. At the outset we describe ST s and biota, and we estimate the contribution of various groups to the provision of ecosystem services. We focused on interactive effects of soil properties on community patterns and ecosystem functioning using food web models. Ecologists analyze soil food webs by means of mechanistic and statistical modelling, linking network structure to energy flow and elemental dynamics commonly based on allometric scaling. 3. We also explored how predatory and metabolic processes are constrained by body size, diet and metabolic type, and how these constraints govern the interactions within and between trophic groups. In particular, we focused on how elemental fluxes determine the strengths of ecological interactions, and the resulting ecosystem services, in terms of sustenance of soil fertility. 4. We discuss data mining, food web visualizations, and an appropriate categorical way to capture subtle interrelationships within the DSQN dataset. Sampled metazoans were used to provide an overview of belowground processes and influences of land use. Unlike most studies to date we used data from the entire size spectrum, across 15 orders of magnitude, using body size as a continuous trait crucial for understanding ecological services. 5. Multimodality in the frequency distributions of body size represents a performance filter that acts as a buffer to environmental change. Large differences in the body-size distributions across ET s and ST s were evident. Most observed trends support the hypothesis that the direct influence of ecological stoichiometry on the soil biota as an independent predictor (e.g. in the form of nutrient to carbon ratios), and consequently on the allometric scaling, is more dominant than either ET or ST . This provides opportunities to develop a mechanistic and physiologically oriented model for the distribution of species’ body sizes, where responses of invertebrates can be predicted. 6. Our results highlight the different roles that organisms play in a number of key ecosystem services. Such a trait-based research has unique strengths in its rigorous formulation of fundamental scaling rules, as well as in its verifiability by empirical data. Nonetheless, it still has weaknesses that remain to be addressed, like the consequences of intraspecific size variation, the high degree of omnivory, and a possibly inaccurate assignment to trophic groups. 7. Studying the extent to which nutrient levels influence multitrophic interactions and how different land-use regimes affect soil biodiversity is clearly a fruitful area for future research to develop predictive models for soil ecosystem services under different management regimes. No similar efforts have been attempted previously for soil food webs, and our dataset has the potential to test and further verify its usefulness at an unprecedented space scale.
Trends in Ecology and Evolution | 2016
David A. Bohan; Dries Landuyt; Athen Ma; Sarina Macfadyen; Vincent Martinet; François Massol; Greg J. McInerny; José M. Montoya; Christian Mulder; Unai Pascual; Michael J. O. Pocock; Piran C. L. White; Sandrine Blanchemanche; Michael Bonkowski; Vincent Bretagnolle; Christer Brönmark; Lynn V. Dicks; Alex J. Dumbrell; Nico Eisenhauer; Nikolai Friberg; Mark O. Gessner; Richard J. Gill; Clare Gray; A. J. Haughton; Sébastien Ibanez; John Jensen; Erik Jeppesen; Jukka Jokela; Gérard Lacroix; Christian Lannou
The ecosystem services (EcoS) concept is being used increasingly to attach values to natural systems and the multiple benefits they provide to human societies. Ecosystem processes or functions only become EcoS if they are shown to have social and/or economic value. This should assure an explicit connection between the natural and social sciences, but EcoS approaches have been criticized for retaining little natural science. Preserving the natural, ecological science context within EcoS research is challenging because the multiple disciplines involved have very different traditions and vocabularies (common-language challenge) and span many organizational levels and temporal and spatial scales (scale challenge) that define the relevant interacting entities (interaction challenge). We propose a network-based approach to transcend these discipline challenges and place the natural science context at the heart of EcoS research.
PLOS ONE | 2012
M.T.W. Vervoort; J. Arie Vonk; Paul Mooijman; Sven van den Elsen; Hanny van Megen; Peter Veenhuizen; Renske Landeweert; Jaap Bakker; Christian Mulder; Johannes Helder
Soils are among the most complex, diverse and competitive habitats on Earth and soil biota are responsible for ecosystem services such as nutrient cycling, carbon sequestration and remediation of freshwater. The extreme biodiversity prohibits the making of a full inventory of soil life. Hence, an appropriate indicator group should be selected to determine the biological condition of soil systems. Due to their ubiquity and the diverse responses to abiotic and biotic changes, nematodes are suitable indicators for environmental monitoring. However, the time-consuming microscopic analysis of nematode communities has limited the scale at which this indicator group is used. In an attempt to circumvent this problem, a quantitative PCR-based tool for the detection of a consistent part of the soil nematofauna was developed based on a phylum-wide molecular framework consisting of 2,400 full-length SSU rDNA sequences. Taxon-specific primers were designed and tested for specificity. Furthermore, relationships were determined between the quantitative PCR output and numbers of target nematodes. As a first field test for this DNA sequence signature-based approach, seasonal fluctuations of nematode assemblages under open canopy (one field) and closed canopy (one forest) were monitored. Fifteen taxa from four feeding guilds (covering ∼ 65% of the free-living nematode biodiversity at higher taxonomical level) were detected at two trophic levels. These four feeding guilds are composed of taxa that developed independently by parallel evolution and we detected ecologically interpretable patterns for free-living nematodes belonging to the lower trophic level of soil food webs. Our results show temporal fluctuations, which can be even opposite within taxa belonging to the same guild. This research on nematode assemblages revealed ecological information about the soil food web that had been partly overlooked.
Ecology | 2011
Christian Mulder; J. Arie Vonk
Soil life is complex, and huge body-size changes of organisms like soil nematodes remain enigmatic along environmental gradients and across ecosystems. Such a knowledge gap is surprising, given the importance of these invertebrates for ecosystem functioning. Moreover, differences in the biological stoichiometry between terrestrial systems are still poorly understood. Within one of the most intensive ecological soil surveys worldwide ever, containing 29 552 individual records, we monitored the nematodes of 200 rural and natural areas in The Netherlands. In addition to the body length, width, and estimated mass of nematodes, this data set includes information on taxonomy, life stage, sex, feeding habit, trophic level, geographic location, sampling period, ecosystem type, soil type, and soil chemistry (pH, organic carbon, and total nitrogen and phosphorus contents). Physical, chemical, and biological information was organized over different categories regarding four soil types and three land-use types (resul...
Environmental Toxicology and Chemistry | 2012
Anastasia Fedorenkova; J. Arie Vonk; H. J. Rob Lenders; R. C. M. Creemers; A.M. Breure; A. Jan Hendriks
Populations of amphibians have been declining worldwide since the late 1960s. Despite global concern, no studies have quantitatively assessed the major causes of this decline. In the present study, species sensitivity distributions (SSDs) were developed to analyze the sensitivity of anurans for ammonium, nitrate, heavy metals (cadmium, copper), pesticides (18 compounds), and acidification (pH) based on laboratory toxicity data. Ecological risk (ER) was calculated as the probability that a measured environmental concentration of a particular stressor in habitats where anurans were observed would exceed the toxic effect concentrations derived from the species sensitivity distributions. The assessment of ER was used to rank the stressors according to their potential risk to anurans based on a case study of Dutch freshwater bodies. The derived ERs revealed that threats to populations of anurans decreased in the sequence of pH, copper, diazinon, ammonium, and endosulfan. Other stressors studied were of minor importance. The method of deriving ER by combining field observation data and laboratory data provides insight into potential threats to species in their habitats and can be used to prioritize stressors, which is necessary to achieve effective management in amphibian conservation.
Naturwissenschaften | 2009
Christian Mulder; Henri A. Den Hollander; J. Arie Vonk; Axel G. Rossberg; Gerard A. J. M. Jagers op Akkerhuis; G. W. Yeates
The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass–abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways.
Ecology and Evolution | 2011
Christian Mulder; Johannes Helder; M.T.W. Vervoort; J. Arie Vonk
Nematodes are presumably the most numerous Metazoans in terrestrial habitats. They are represented at all trophic levels and are known to respond to nutrient limitation, prey availability, and microbial resources. Predatory nematodes reside at the highest trophic level, and as such their feeding habits could have a major impact on soil food web functioning. Here, we investigate the effects of gender and developmental stage on the nematode body sizes in coarse and loamy soils. Besides Neodiplogasteridae, our predators are much larger than other soil-dwelling nematodes from their early developmental stage onwards. From juvenile to adult, the predatory Aporcelaimellus (Kruskal–Wallis P < 0.001), Dorylaimoides, and Tripyla (both P < 0.01) show great length increases during their developmental growth, in contrast to their possible prey (almost all P < 0.001). Less than 4% of the prey exceeds the length of the predatory adults, but more than 30% of the prey exceeds the length of the predatory juveniles. Potential body size ratios and some physical problems experienced by small fluid feeders attacking large prey are discussed in an attempt to summarize different prey-searching mechanisms and aggregative predatory responses in the soil system.
Biology and Fertility of Soils | 2015
Karst M. Brolsma; J. Arie Vonk; Ellis Hoffland; Christian Mulder; Ron G.M. de Goede
Plant roots have a profound effect on soil microbial activity, particularly in the rhizosphere. Hence, it is important to understand the potential effects of genetically modified (GM) crops on soil microbial activity and related processes such as litter decomposition. In this study, we compared the effects of GM potato Modena on soil microbial activity and carbon (C) and nitrogen (N) mineralization to effects induced by Modena’s parental isoline (Karnico) and a conventional potato cultivar (Aventra). A field experiment was conducted at two sites to assess microbial catabolic diversity (using MicroRespTM) in the rhizosphere and in bulk soil, during flowering and senescence of the potato plants. In a laboratory experiment with soil and potato litter from the field experiment, we investigated whether the cultivars had modified the activity of soil microbial communities to such an extent that this affected C and N mineralization. Results of the field experiment showed no GM-induced effects on microbial catabolic diversity, while effects of field site location and sampling date were significant. Multivariate analysis including plant traits and soil characteristics revealed that microbial catabolic activities in rhizosphere soil were strongly correlated with soil organic matter and tuber sucrose content, whereas in bulk soil, they were primarily correlated with soil moisture. In the laboratory experiment, we found that Modena induced a “home-field advantage” in N mineralization, yet this effect was inconsistent across locations and was also observed for other cultivars. Based on our data and results from previous studies, we conclude that the effects of GM cultivar Modena on soil microbial activity and litter decomposition fall within the normal range of effects found for conventional potato cultivars.
Scientific Reports | 2016
J. Arie Vonk; Bernd F. van Kuijk; Mick van Beusekom; Ellard R. Hunting; M.H.S. Kraak
Chemical composition of organic matter (OM) is a key driver for detritus consumption by macroinvertebrates and polyunsaturated fatty acid (PUFA) content is considered a candidate indicator of food palatability. Since traditionally used complex natural OM covaries in many quality attributes, it remains uncertain whether benthic invertebrates developed an actual preference for PUFA-rich food. Therefore we aimed to test the influence of the PUFA linoleic acid on OM consumption by aquatic macroinvertebrates using standardized surrogate substrates (decomposition and consumption tablet, DECOTAB) with added linoleic acid (PUFA) in comparison to consumption of DECOTAB containing only cellulose (Standard) or ground macrophytes (Plant). In microcosms, we observed a higher consumption rate of PUFA DECOTAB in comparison to Standard DECOTAB in two functionally distinct invertebrate species (Lumbriculus variegatus and Asellus aquaticus). This effect appeared to be overruled in the field due to unknown sources of natural variation. Although we observed higher consumption rates in species-rich ditches compared to species-poor ditches, consumption rates were comparable for all three types of DECOTAB deployed. Upon reduced food quality and palatability, results presented here hint that PUFA like linoleic acid may be a key OM attribute driving the performance of benthic macroinvertebrates and inherent functioning of aquatic ecosystems.
Hydrobiologia | 2015
Alejandra Goldenberg Vilar; J. Arie Vonk; Simon Bichebois; Herman van Dam; Wim Admiraal; Harm G. van der Geest
Mineral particles in rivers have been shown to cover adnate algal species, promoting motile and filamentous species. Such effects and the role of detrital particles have not been studied in stagnant waters. In degraded peat lands, detrital particles are very prominent and therefore we studied the interaction of organic particles and attached algae. Field grown communities were translocated to microcosms and exposed to organic particles in the laboratory. Colonization of substrate was also studied in field enclosures that allowed settlement of particles. We compared algal settlement under low particle regime (enclosures) with settlement at high particle concentrations (outside). Suspended particles were found to be trapped by attached algae in proportion to the concentration of particles. The presence of particles in the incubations and field enclosures modified species composition, reducing the share of low-profile forms. These experimental results were verified in a field survey with a wide range of turbidity. The share of low-profile species was lowest in turbid ditches while motile and planktonic algae dominated, in agreement with the results from experiments. It is argued that the strong interactions of attached algae and suspended organic matter found in peat land ditches is a characteristic feature of detritus rich waters.