Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Ashot Kozak is active.

Publication


Featured researches published by J. Ashot Kozak.


Journal of Cell Biology | 2005

STIM1, an essential and conserved component of store-operated Ca2+ channel function

Jack Roos; Paul J. Digregorio; Andriy V. Yeromin; Kari Lynn Ohlsen; Maria I. Lioudyno; Shenyuan L. Zhang; Olga Safrina; J. Ashot Kozak; Steven L. Wagner; Michael D. Cahalan; Gonul Velicelebi; Kenneth A. Stauderman

Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.


Nature | 2005

STIM1 is a Ca2+ Sensor That Activates CRAC Channels and Migrates from the Ca2+ Store to the Plasma Membrane

Shenyuan L. Zhang; Ying Yu; Jack Roos; J. Ashot Kozak; Thomas J. Deerinck; Mark H. Ellisman; Kenneth A. Stauderman; Michael D. Cahalan

As the sole Ca2+ entry mechanism in a variety of non-excitable cells, store-operated calcium (SOC) influx is important in Ca2+ signalling and many other cellular processes. A calcium-release-activated calcium (CRAC) channel in T lymphocytes is the best-characterized SOC influx channel and is essential to the immune response, sustained activity of CRAC channels being required for gene expression and proliferation. The molecular identity and the gating mechanism of SOC and CRAC channels have remained elusive. Previously we identified Stim and the mammalian homologue STIM1 as essential components of CRAC channel activation in Drosophila S2 cells and human T lymphocytes. Here we show that the expression of EF-hand mutants of Stim or STIM1 activates CRAC channels constitutively without changing Ca2+ store content. By immunofluorescence, EM localization and surface biotinylation we show that STIM1 migrates from endoplasmic-reticulum-like sites to the plasma membrane upon depletion of the Ca2+ store. We propose that STIM1 functions as the missing link between Ca2+ store depletion and SOC influx, serving as a Ca2+ sensor that translocates upon store depletion to the plasma membrane to activate CRAC channels.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation

Maria I. Lioudyno; J. Ashot Kozak; Aubin Penna; Olga Safrina; Shenyuan L. Zhang; Debasish Sen; Jack Roos; Kenneth A. Stauderman; Michael D. Cahalan

For efficient development of an immune response, T lymphocytes require long-lasting calcium influx through calcium release-activated calcium (CRAC) channels and the formation of a stable immunological synapse (IS) with the antigen-presenting cell (APC). Recent RNAi screens have identified Stim and Orai in Drosophila cells, and their corresponding mammalian homologs STIM1 and Orai1 in T cells, as essential for CRAC channel activation. Here, we show that STIM1 and Orai1 are recruited to the immunological synapse between primary human T cells and autologous dendritic cells. Both STIM1 and Orai1 accumulated in the area of contact between either resting or super-antigen (SEB)-pretreated T cells and SEB-pulsed dendritic cells, where they were colocalized with T cell receptor (TCR) and costimulatory molecules. In addition, imaging of intracellular calcium signaling in T cells loaded with EGTA revealed significantly higher Ca2+ concentration near the interface, indicating Ca2+ influx localized at the T cell/dendritic cell contact area. Expression of a dominant-negative Orai1 mutant blocked T cell Ca2+ signaling but did not interfere with the initial accumulation of STIM1, Orai1, and CD3 in the contact zone. In activated T cell blasts, mRNA expression for endogenous STIM1 and all three human homologs of Orai was up-regulated, accompanied by a marked increase in Ca2+ influx through CRAC channels. These results imply a positive feedback loop in which an initial TCR signal favors up-regulation of STIM1 and Orai proteins that would augment Ca2+ signaling during subsequent antigen encounter.


The Journal of General Physiology | 2006

Soluble Amyloid Oligomers Increase Bilayer Conductance by Altering Dielectric Structure

Yuri Sokolov; J. Ashot Kozak; Rakez Kayed; Alexandr Chanturiya; Charles G. Glabe; James E. Hall

The amyloid hypothesis of Alzheimers toxicity has undergone a resurgence with increasing evidence that it is not amyloid fibrils but a smaller oligomeric species that produces the deleterious results. In this paper we address the mechanism of this toxicity. Only oligomers increase the conductance of lipid bilayers and patch-clamped mammalian cells, producing almost identical current–voltage curves in both preparations. Oligomers increase the conductance of the bare bilayer, the cation conductance induced by nonactin, and the anion conductance induced by tetraphenyl borate. Negative charge reduces the sensitivity of the membrane to amyloid, but cholesterol has little effect. In contrast, the area compressibility of the lipid has a very large effect. Membranes with a large area compressibility modulus are almost insensitive to amyloid oligomers, but membranes formed from soft, highly compressible lipids are highly susceptible to amyloid oligomer-induced conductance changes. Furthermore, membranes formed using the solvent decane (instead of squalane) are completely insensitive to the presence of oligomers. One simple explanation for these effects on bilayer conductance is that amyloid oligomers increase the area per molecule of the membrane-forming lipids, thus thinning the membrane, lowering the dielectric barrier, and increasing the conductance of any mechanism sensitive to the dielectric barrier.


The Journal of General Physiology | 2002

Distinct Properties of CRAC and MIC Channels in RBL Cells

J. Ashot Kozak; Hubert H. Kerschbaum; Michael D. Cahalan

In rat basophilic leukemia (RBL) cells and Jurkat T cells, Ca2+ release–activated Ca2+ (CRAC) channels open in response to passive Ca2+ store depletion. Inwardly rectifying CRAC channels admit monovalent cations when external divalent ions are removed. Removal of internal Mg2+ exposes an outwardly rectifying current (Mg2+-inhibited cation [MIC]) that also admits monovalent cations when external divalent ions are removed. Here we demonstrate that CRAC and MIC currents are separable by ion selectivity and rectification properties: by kinetics of activation and susceptibility to run-down and by pharmacological sensitivity to external Mg2+, spermine, and SKF-96365. Importantly, selective run-down of MIC current allowed CRAC and MIC current to be characterized under identical ionic conditions with low internal Mg2+. Removal of internal Mg2+ induced MIC current despite widely varying Ca2+ and EGTA levels, suggesting that Ca2+-store depletion is not involved in activation of MIC channels. Increasing internal Mg2+ from submicromolar to millimolar levels decreased MIC currents without affecting rectification but did not alter CRAC current rectification or amplitudes. External Mg2+ and Cs+ carried current through MIC but not CRAC channels. SKF-96365 blocked CRAC current reversibly but inhibited MIC current irreversibly. At micromolar concentrations, both spermine and extracellular Mg2+ blocked monovalent MIC current reversibly but not monovalent CRAC current. The biophysical characteristics of MIC current match well with cloned and expressed TRPM7 channels. Previous results are reevaluated in terms of separate CRAC and MIC channels.


Journal of Biological Chemistry | 2008

Store-dependent and -independent Modes Regulating Ca2+ Release-activated Ca2+ Channel Activity of Human Orai1 and Orai3

Shenyuan L. Zhang; J. Ashot Kozak; Weihua Jiang; Andriy V. Yeromin; Jing Chen; Ying Yu; Aubin Penna; Wei Shen; Victor Chi; Michael D. Cahalan

We evaluated currents induced by expression of human homologs of Orai together with STIM1 in human embryonic kidney cells. When co-expressed with STIM1, Orai1 induced a large inwardly rectifying Ca2+-selective current with Ca2+-induced slow inactivation. A point mutation of Orai1 (E106D) altered the ion selectivity of the induced Ca2+ release-activated Ca2+ (CRAC)-like current while retaining an inwardly rectifying I-V characteristic. Expression of the C-terminal portion of STIM1 with Orai1 was sufficient to generate CRAC current without store depletion. 2-APB activated a large relatively nonselective current in STIM1 and Orai3 co-expressing cells. 2-APB also induced Ca2+ influx in Orai3-expressing cells without store depletion or co-expression of STIM1. The Orai3 current induced by 2-APB exhibited outward rectification and an inward component representing a mixed calcium and monovalent current. A pore mutant of Orai3 inhibited store-operated Ca2+ entry and did not carry significant current in response to either store depletion or addition of 2-APB. Analysis of a series of Orai1-3 chimeras revealed the structural determinant responsible for 2-APB-induced current within the sequence from the second to third transmembrane segment of Orai3. The Orai3 current induced by 2-APB may reflect a store-independent mode of CRAC channel activation that opens a relatively nonselective cation pore.


Biophysical Journal | 2003

MIC Channels Are Inhibited by Internal Divalent Cations but Not ATP

J. Ashot Kozak; Michael D. Cahalan

TRPM7 channels are nonselective cation channels that possess a functional alpha-kinase domain. It has been proposed that heterologously expressed TRPM7 channels are activated (Runnels et al., 2001) or inhibited (Nadler et al., 2001) by dialyzing the cell with millimolar levels of ATP. The endogenous correlate of TRPM7 has been identified in T-lymphocytes and RBL (rat basophilic leukemia) cells and named MagNuM (for Mg(2+)-nucleotide-inhibited metal) or MIC (for Mg(2+)-inhibited cation). Here, we report that internal Mg(2+) rather than MgATP inhibits this current. Cytoplasmic MgATP, supplied by dialysis at millimolar concentrations, effectively inhibits only when a weak Mg(2+) chelator is present in the pipette solution. Thus, MgATP acts as a source of Mg(2+) rather than a source of ATP. Using an externally accessible site within the pore of the MIC channel itself as a bioassay, we show that equimolar MgCl(2) and MgATP solutions contain similar amounts of free Mg(2+), explaining the fact that numeric values of Mg(2+) and MgATP concentrations necessary for complete inhibition are the same. Furthermore, we demonstrate that Mg(2+) is not unique in its inhibitory action, as Ba(2+), Sr(2+), Zn(2+), and Mn(2+) can substitute for Mg(2+), causing complete inhibition. We conclude that MIC current inhibition occurs simply by divalent cations.


The Journal of General Physiology | 2005

Charge screening by internal ph and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels

J. Ashot Kozak; Masayuki Matsushita; Angus C. Nairn; Michael D. Cahalan

The Mg2+-inhibited cation (MIC) current, believed to represent activity of TRPM7 channels, is found in lymphocytes and mast cells, cardiac and smooth muscle, and several other eukaryotic cell types. MIC current is activated during whole-cell dialysis with divalent-free internal solutions. Millimolar concentrations of intracellular Mg2+ (or other divalent metal cations) inhibit the channels in a voltage-independent manner. The nature of divalent inhibition and the mechanism of channel activation in an intact cell remain unknown. We show that the polyamines (spermine, spermidine, and putrescine) inhibit the MIC current, also in a voltage-independent manner, with a potency that parallels the number of charges. Neomycin and poly-lysine also potently inhibited MIC current in the absence of Mg2+. These same positively charged ions inhibited IRK1 current in parallel with MIC current, suggesting that they probably act by screening the head group phosphates on PIP2 and other membrane phospholipids. In agreement with this hypothesis, internal protons also inhibited MIC current. By contrast, tetramethylammonium, tetraethylammonium, and hexamethonium produced voltage-dependent block but no inhibition. We show that inhibition by internal polyvalent cations can be relieved by alkalinizing the cytosol using externally applied ammonium or by increasing pH in inside-out patches. Furthermore, in perforated-patch and cell-attached recordings, when intracellular Mg2+ is not depleted, endogenous MIC or recombinant TRPM7 currents are activated by cytosolic alkalinization and inhibited by acidification; and they can be reactivated by PIP2 following rundown in inside-out patches. We propose that MIC (TRPM7) channels are regulated by a charge screening mechanism and may function as sensors of intracellular pH.


Biophysical Journal | 2003

Polyvalent Cations as Permeant Probes of MIC and TRPM7 Pores

Hubert H. Kerschbaum; J. Ashot Kozak; Michael D. Cahalan

Recent studies in Jurkat T cells and in rat basophilic leukemia cells revealed an Mg(2+)-inhibited cation (MIC) channel that has electrophysiological properties similar to TRPM7 Eyring rate model expressed exogenously in mammalian cells. Here we compare the characteristics of several polyvalent cations and Mg(2+) to block monovalent MIC current from the outside. Putrescine, spermidine, spermine, PhTX-343 (a derivative of the naturally occurring polyamine toxin philanthotoxin), and Mg(2+) each blocked in a dose- and voltage-dependent manner, indicating a blocking site within the electric field of the ion channel. Spermine and the relatively bulky PhTX-343 exhibited voltage dependence steeper than that expected for the number of charges on the molecule. Polyamines and Mg(2+) are permeant blockers, as judged by relief of block at strongly negative membrane potentials. Intracellular dialysis with spermine (300 microM) had no effect, indicating an asymmetrical pore. At the single-channel level, spermine and Mg(2+) induced flickery block of 40-pS single channels. I/V characteristics and polyamine block are similar in expressed TRPM7 and in native MIC currents, consistent with the conclusion that native MIC channels are composed of TRPM7 subunits. An Eyring rate model is developed to account for I/V characteristics and block of MIC channels by polyvalent cations from the outside.


Scientific Reports | 2015

Inactivation of TRPM7 kinase activity does not impair its channel function in mice.

Taku Kaitsuka; Chiaki Katagiri; Pavani Beesetty; Kenji Nakamura; Siham Hourani; Kazuhito Tomizawa; J. Ashot Kozak; Masayuki Matsushita

Transient receptor potential (TRP) family channels are involved in sensory pathways and respond to various environmental stimuli. Among the members of this family, TRPM7 is a unique fusion of an ion channel and a C-terminus kinase domain that is highly expressed in immune cells. TRPM7 serves as a key molecule governing cellular Mg2+ homeostasis in mammals since its channel pore is permeable to Mg2+ ions and can act as a Mg2+ influx pathway. However, mechanistic links between its kinase activity and channel function have remained uncertain. In this study, we generated kinase inactive knock-in mutant mice by mutagenesis of a key lysine residue involved in Mg2+-ATP binding. These mutant mice were normal in development and general locomotor activity. In peritoneal macrophages isolated from adult animals the basal activity of TRPM7 channels prior to cytoplasmic Mg2+ depletion was significantly potentiated, while maximal current densities measured after Mg2+ depletion were unchanged in the absence of detectable kinase function. Serum total Ca2+ and Mg2+ levels were not significantly altered in kinase-inactive mutant mice. Our findings suggest that abolishing TRPM7 kinase activity does not impair its channel activity and kinase activity is not essential for regulation of mammalian Mg2+ homeostasis.

Collaboration


Dive into the J. Ashot Kozak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuri Sokolov

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James E. Hall

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge