Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Cahalan is active.

Publication


Featured researches published by Michael D. Cahalan.


Journal of Cell Biology | 2005

STIM1, an essential and conserved component of store-operated Ca2+ channel function

Jack Roos; Paul J. Digregorio; Andriy V. Yeromin; Kari Lynn Ohlsen; Maria I. Lioudyno; Shenyuan L. Zhang; Olga Safrina; J. Ashot Kozak; Steven L. Wagner; Michael D. Cahalan; Gonul Velicelebi; Kenneth A. Stauderman

Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.


Nature | 2005

STIM1 is a Ca2+ Sensor That Activates CRAC Channels and Migrates from the Ca2+ Store to the Plasma Membrane

Shenyuan L. Zhang; Ying Yu; Jack Roos; J. Ashot Kozak; Thomas J. Deerinck; Mark H. Ellisman; Kenneth A. Stauderman; Michael D. Cahalan

As the sole Ca2+ entry mechanism in a variety of non-excitable cells, store-operated calcium (SOC) influx is important in Ca2+ signalling and many other cellular processes. A calcium-release-activated calcium (CRAC) channel in T lymphocytes is the best-characterized SOC influx channel and is essential to the immune response, sustained activity of CRAC channels being required for gene expression and proliferation. The molecular identity and the gating mechanism of SOC and CRAC channels have remained elusive. Previously we identified Stim and the mammalian homologue STIM1 as essential components of CRAC channel activation in Drosophila S2 cells and human T lymphocytes. Here we show that the expression of EF-hand mutants of Stim or STIM1 activates CRAC channels constitutively without changing Ca2+ store content. By immunofluorescence, EM localization and surface biotinylation we show that STIM1 migrates from endoplasmic-reticulum-like sites to the plasma membrane upon depletion of the Ca2+ store. We propose that STIM1 functions as the missing link between Ca2+ store depletion and SOC influx, serving as a Ca2+ sensor that translocates upon store depletion to the plasma membrane to activate CRAC channels.


Nature | 2006

Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai

Andriy V. Yeromin; Shenyuan L. Zhang; Weihua Jiang; Ying Yu; Olga Safrina; Michael D. Cahalan

Recent RNA interference screens have identified several proteins that are essential for store-operated Ca2+ influx and Ca2+ release-activated Ca2+ (CRAC) channel activity in Drosophila and in mammals, including the transmembrane proteins Stim (stromal interaction molecule) and Orai. Stim probably functions as a sensor of luminal Ca2+ content and triggers activation of CRAC channels in the surface membrane after Ca2+ store depletion. Among three human homologues of Orai (also known as olf186-F), ORAI1 on chromosome 12 was found to be mutated in patients with severe combined immunodeficiency disease, and expression of wild-type Orai1 restored Ca2+ influx and CRAC channel activity in patient T cells. The overexpression of Stim and Orai together markedly increases CRAC current. However, it is not yet clear whether Stim or Orai actually forms the CRAC channel, or whether their expression simply limits CRAC channel activity mediated by a different channel-forming subunit. Here we show that interaction between wild-type Stim and Orai, assessed by co-immunoprecipitation, is greatly enhanced after treatment with thapsigargin to induce Ca2+ store depletion. By site-directed mutagenesis, we show that a point mutation from glutamate to aspartate at position 180 in the conserved S1–S2 loop of Orai transforms the ion selectivity properties of CRAC current from being Ca2+-selective with inward rectification to being selective for monovalent cations and outwardly rectifying. A charge-neutralizing mutation at the same position (glutamate to alanine) acts as a dominant-negative non-conducting subunit. Other charge-neutralizing mutants in the same loop express large inwardly rectifying CRAC current, and two of these exhibit reduced sensitivity to the channel blocker Gd3+. These results indicate that Orai itself forms the Ca2+-selectivity filter of the CRAC channel.


Journal of Experimental Medicine | 2004

Imaging the Single Cell Dynamics of CD4+ T Cell Activation by Dendritic Cells in Lymph Nodes

Mark J. Miller; Olga Safrina; Ian Parker; Michael D. Cahalan

The adaptive immune response is initiated in secondary lymphoid organs by contact between antigen-bearing dendritic cells (DCs) and antigen-specific CD4+ T cells. However, there is scant information regarding the single cell dynamics of this process in vivo. Using two-photon microscopy, we imaged the real-time behavior of naive CD4+ T cells and in vivo–labeled DCs in lymph nodes during a robust T cell response. In the first 2 h after entry into lymph nodes, T cells made short-lived contacts with antigen-bearing DCs, each contact lasting an average of 11–12 min and occurring mainly on dendrites. Altered patterns of T cell motility during this early stage of antigen recognition promoted serial engagement with several adjacent DCs. Subsequently, T cell behavior progressed through additional distinct stages, including long-lived clusters, dynamic swarms, and finally autonomous migration punctuated by cell division. These observations suggest that the immunological synapse in native tissues is remarkably fluid, and that stable synapses form only at specific stages of antigen presentation to T cells. Furthermore, the serial nature of these interactions implies that T cells activate by way of multiple antigen recognition events.


PLOS Biology | 2005

Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells.

Takaharu Okada; Mark J. Miller; Ian Parker; Matthew F. Krummel; Margaret Neighbors; Suzanne B. Hartley; Anne O'Garra; Michael D. Cahalan; Jason G. Cyster

Interactions between B and T cells are essential for most antibody responses, but the dynamics of these interactions are poorly understood. By two-photon microscopy of intact lymph nodes, we show that upon exposure to antigen, B cells migrate with directional preference toward the B-zone–T-zone boundary in a CCR7-dependent manner, through a region that exhibits a CCR7-ligand gradient. Initially the B cells show reduced motility, but after 1 d, motility is increased to approximately 9 μm/min. Antigen-engaged B cells pair with antigen-specific helper T cells for 10 to more than 60 min, whereas non-antigen-specific interactions last less than 10 min. B cell–T cell conjugates are highly dynamic and migrate extensively, being led by B cells. B cells occasionally contact more than one T cell, whereas T cells are strictly monogamous in their interactions. These findings provide evidence of lymphocyte chemotaxis in vivo, and they begin to define the spatiotemporal cellular dynamics associated with T cell–dependent antibody responses.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy

Mark J. Miller; Sindy H. Wei; Michael D. Cahalan; Ian Parker

The recirculation of T cells between the blood and secondary lymphoid organs requires that T cells are motile and sensitive to tissue-specific signals. T cell motility has been studied in vitro, but the migratory behavior of individual T cells in vivo has remained enigmatic. Here, using intravital two-photon laser microscopy, we imaged the locomotion and trafficking of naïve CD4+ T cells in the inguinal lymph nodes of anesthetized mice. Intravital recordings deep within the lymph node showed T cells flowing rapidly in the microvasculature and captured individual homing events. Within the diffuse cortex, T cells displayed robust motility with an average velocity of ≈11 μm⋅min−1. T cells cycled between states of low and high motility roughly every 2 min, achieving peak velocities >25 μm⋅min−1. An analysis of T cell migration in 3D space revealed a default trafficking program analogous to a random walk. Our results show that naïve T cells do not migrate collectively, as they might under the direction of pervasive chemokine gradients. Instead, they appear to migrate as autonomous agents, each cell taking an independent trafficking path. Our results call into question the role of chemokine gradients for basal T cell trafficking within T cell areas and suggest that antigen detection may result from a stochastic process through which a random walk facilitates contact with antigen-presenting dendritic cells.


Immunity | 1996

Polarity of T Cell Shape, Motility, and Sensitivity to Antigen

Paul A. Negulescu; Tatiana B. Krasieva; Abrar Khan; Hubert H. Kerschbaum; Michael D. Cahalan

T cell activation requires contact with APCs. We used optical techniques to demonstrate T cell polarity on the basis of shape, motility, and localized sensitivity to antigen. An intracellular Ca2+ clamp showed that T cell shape and motility are extremely sensitive to changes in [Ca2+]i (Kd = 200 nM), with immobilization and rounding occurring via a calcineurin-independent pathway. Ca2+ dependent immobilization prolonged T cell contact with the antigen-presenting B cell; buffering the [Ca2+]i signal prevented the formation of stable cell pairs. Optical tweezers revealed spatial T cell sensitivity to antigen by controlling placement on the T cell surface of either B cells or alpha-CD3 MAb-coated beads. T cells were 4-fold more sensitive to contact made at the leading edge of the T cell compared with the tail. We conclude that motile T cells are polarized antigen sensors that respond physically to [Ca2+]i signals to stabilize their interaction with APCs.


Immunological Reviews | 2009

The functional network of ion channels in T lymphocytes

Michael D. Cahalan; K. George Chandy

Summary:  For more than 25 years, it has been widely appreciated that Ca2+ influx is essential to trigger T‐lymphocyte activation. Patch clamp analysis, molecular identification, and functional studies using blockers and genetic manipulation have shown that a unique contingent of ion channels orchestrates the initiation, intensity, and duration of the Ca2+ signal. Five distinct types of ion channels – Kv1.3, KCa3.1, Orai1+ stromal interacting molecule 1 (STIM1) [Ca2+‐release activating Ca2+ (CRAC) channel], TRPM7, and Clswell– comprise a network that performs functions vital for ongoing cellular homeostasis and for T‐cell activation, offering potential targets for immunomodulation. Most recently, the roles of STIM1 and Orai1 have been revealed in triggering and forming the CRAC channel following T‐cell receptor engagement. Kv1.3, KCa3.1, STIM1, and Orai1 have been found to cluster at the immunological synapse following contact with an antigen‐presenting cell; we discuss how channels at the synapse might function to modulate local signaling. Immuno‐imaging approaches are beginning to shed light on ion channel function in vivo. Importantly, the expression pattern of Ca2+ and K+ channels and hence the functional network can adapt depending upon the state of differentiation and activation, and this allows for different stages of an immune response to be targeted specifically.


Journal of Biological Chemistry | 2000

Up-regulation of the IKCa1 Potassium Channel during T-cell Activation MOLECULAR MECHANISM AND FUNCTIONAL CONSEQUENCES

Sanjiv Ghanshani; Heike Wulff; Mark J. Miller; Heike Rohm; Amber L. Neben; George A. Gutman; Michael D. Cahalan; K. George Chandy

We used whole cell recording to evaluate functional expression of the intermediate conductance Ca2+-activated K+ channel,IKCa1, in response to various mitogenic stimuli. One to two days following engagement of T-cell receptors to trigger both PKC- and Ca2+-dependent events, IKCa1expression increased from an average of 8 to 300–800 channels/cell. Selective stimulation of the PKC pathway resulted in equivalent up-regulation, whereas a calcium ionophore was relatively ineffective. Enhancement in IKCa1 mRNA levels paralleled the increased channel number. The genomic organization ofIKCa1, SKCa2, and SKCa3 were defined, and IKCa and SKCa genes were found to have a remarkably similar intron-exon structure. Mitogens enhancedIKCa1 promoter activity proportional to the increase inIKCa1 mRNA, suggesting that transcriptional mechanisms underlie channel up-regulation. Mutation of motifs for AP1 and Ikaros-2 in the promoter abolished this induction. Selective Kv1.3inhibitors ShK-Dap22, margatoxin, and correolide suppressed mitogenesis of resting T-cells but not preactivated T-cells with up-regulated IKCa1 channel expression. Selectively blockingIKCa1 channels with clotrimazole or TRAM-34 suppressed mitogenesis of preactivated lymphocytes, whereas resting T-cells were less sensitive. Thus, Kv1.3 channels are essential for activation of quiescent cells, but signaling through the PKC pathway enhances expression of IKCa1 channels that are required for continued proliferation.


Nature | 2008

The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers.

Aubin Penna; Angelo Demuro; Andriy V. Yeromin; Shenyuan L. Zhang; Olga Safrina; Ian Parker; Michael D. Cahalan

Ca2+-release-activated Ca2+ (CRAC) channels underlie sustained Ca2+ signalling in lymphocytes and numerous other cells after Ca2+ liberation from the endoplasmic reticulum (ER). RNA interference screening approaches identified two proteins, Stim and Orai, that together form the molecular basis for CRAC channel activity. Stim senses depletion of the ER Ca2+ store and physically relays this information by translocating from the ER to junctions adjacent to the plasma membrane, and Orai embodies the pore of the plasma membrane calcium channel. A close interaction between Stim and Orai, identified by co-immunoprecipitation and by Förster resonance energy transfer, is involved in the opening of the Ca2+ channel formed by Orai subunits. Most ion channels are multimers of pore-forming subunits surrounding a central channel, which are preassembled in the ER and transported in their final stoichiometry to the plasma membrane. Here we show, by biochemical analysis after cross-linking in cell lysates and intact cells and by using non-denaturing gel electrophoresis without cross-linking, that Orai is predominantly a dimer in the plasma membrane under resting conditions. Moreover, single-molecule imaging of green fluorescent protein (GFP)-tagged Orai expressed in Xenopus oocytes showed predominantly two-step photobleaching, again consistent with a dimeric basal state. In contrast, co-expression of GFP-tagged Orai with the carboxy terminus of Stim as a cytosolic protein to activate the Orai channel without inducing Ca2+ store depletion or clustering of Orai into punctae yielded mostly four-step photobleaching, consistent with a tetrameric stoichiometry of the active Orai channel. Interaction with the C terminus of Stim thus induces Orai dimers to dimerize, forming tetramers that constitute the Ca2+-selective pore. This represents a new mechanism in which assembly and activation of the functional ion channel are mediated by the same triggering molecule.

Collaboration


Dive into the Michael D. Cahalan's collaboration.

Top Co-Authors

Avatar

Ian Parker

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Miller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Olga Safrina

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heike Wulff

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge