Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Bercovitz is active.

Publication


Featured researches published by J. Bercovitz.


Proceedings of SPIE | 1998

Image-side perspective and stereoscopy

J. Bercovitz

Correct perspective is crucial to orthostereoscopy. That is to say, the observer must view from the same points in space, relative to the image, that the stereo cameras lenses had relative to the scene. Errors in placement of the observation points result in distortion of the reconstructed stereo image. Although people adapt easily to visual distortions, they may not do it well enough or quickly enough for critical telepresence and telerobotic applications. Further, it is difficult for humans to reliably determine by sight the correct observation point relative to an image. A mathematical guide to correct perspective is therefore useful. The mathematical key to perspective is that all images must subtend at the eye the same angles which the objects that generated them subtended at the camera. The center of perspective on the object side of a camera is the entrance pupil, but where is the center of perspective on the image side of an asymmetrical lens? A simple formula simply derived answers that question. By way of background, pertinent optics and stereoscopic reconstruction errors, including perspective error, are reviewed in this paper. New work begins in the fourth section.


Astronomical Telescopes and Instrumentation | 2003

SNAP focal plane

Michael L. Lampton; Christopher J. Bebek; C. Akerlof; G. Aldering; R. Amanullah; Pierre Astier; E. Barrelet; Lars Bergström; J. Bercovitz; G. M. Bernstein; M. Bester; Alain Bonissent; C. R. Bower; W. Carithers; Eugene D. Commins; C. Day; Susana Elizabeth Deustua; R. DiGennaro; A. Ealet; Richard S. Ellis; M. Eriksson; Andrew S. Fruchter; Jean-Francois Genat; G. Goldhaber; Ariel Goobar; Donald E. Groom; Stewart E. Harris; Peter R. Harvey; Henry D. Heetderks; S. Holland

The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square-degree field sensitive in the visible and near-infrared wavelength regime. We describe the requirements for the instrument suite and the evolution of the focal plane design to the present concept in which all the instrumentation -- visible and near-infrared imagers, spectrograph, and star guiders -- share one common focal plane.The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square-degree field sensitive in the visible and near-infrared wavelength regime. We describe the requirements for the instrument suite and the evolution of the focal plane design to the present concept in which all the instrumentation -- visible and near-infrared imagers, spectrograph, and star guiders -- share one common focal plane.


UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts | 2004

SNAP telescope: an update

Michael L. Lampton; Michael Sholl; Michael H. Krim; R. Besuner; C. Akerlof; G. Aldering; Rahman Amanullah; Pierre Astier; Charles Baltay; E. Barrelet; S. Basa; Christopher J. Bebek; J. Bercovitz; Lars Bergström; Gary Berstein; M. Bester; Ralph C. Bohlin; Alain Bonissent; C. R. Bower; M. Campbell; W. Carithers; Eugene D. Commins; C. Day; Susana Elizabeth Deustua; R. DiGennaro; A. Ealet; Richard S. Ellis; William Emmett; M. Eriksson; D. Fouchez

We present the baseline telescope design for the telescope for the SuperNova/Acceleration Probe (SNAP) space mission. SNAP’s purpose is to determine expansion history of the Universe by measuring the redshifts, magnitudes, and spectral classifications of thousands of supernovae with unprecedented accuracy. Discovering and measuring these supernovae demand both a wide optical field and a high sensitivity throughout the visible and near IR wavebands. We have adopted the annular-field three-mirror anastigmat (TMA) telescope configuration, whose classical aberrations (including chromatic) are zero. We show a preliminary optmechanical design that includes important features for stray light control and on-orbit adjustment and alignment of the optics. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of the design tasks being carried out during the current SNAP research and development phase.


Astronomical Telescopes and Instrumentation | 2002

Wide-Field Surveys from the SNAP Mission

Alex G. Kim; C. Akerlof; G. Aldering; R. Amanullah; Pierre Astier; E. Barrelet; Christopher J. Bebek; Lars Bergström; J. Bercovitz; G. M. Bernstein; M. Bester; Alain Bonissent; C. R. Bower; W. Carithers; Eugene D. Commins; C. Day; Susana Elizabeth Deustua; R. DiGennaro; A. Ealet; Richard S. Ellis; M. Eriksson; Andrew S. Fruchter; Jean-Francois Genat; G. Goldhaber; Ariel Goobar; Donald E. Groom; Stewart E. Harris; Peter R. Harvey; Henry D. Heetderks; S. Holland

The Supernova / Acceleration Probe (SNAP) is a proposed space-borne observatory that will survey the sky with a wide-field optical/near-infrared (NIR) imager. The images produced by SNAP will have an unprecedented combination of depth, solid-angle, angular resolution, and temporal sampling. For 16 months each, two 7.5 square-degree fields will be observed every four days to a magnitude depth of AB=27.7 in each of the SNAP filters, spanning 3500-17000Å. Co-adding images over all epochs will give AB=30.3 per filter. In addition, a 300 square-degree field will be surveyed to AB=28 per filter, with no repeated temporal sampling. Although the survey strategy is tailored for supernova and weak gravitational lensing observations, the resulting data will support a broad range of auxiliary science programs.


Astronomical Telescopes and Instrumentation | 2003

SNAP NIR detectors

Gregory Tarle; C. Akerlof; G. Aldering; R. Amanullah; Pierre Astier; E. Barrelet; Christopher J. Bebek; Lars Bergström; J. Bercovitz; G. M. Bernstein; M. Bester; Alain Bonissent; C. R. Bower; Mark L. Brown; W. Carithers; Eugene D. Commins; C. Day; Susana Elizabeth Deustua; R. DiGennaro; A. Ealet; Richard S. Ellis; M. Eriksson; Andrew S. Fruchter; Jean-Francois Genat; G. Goldhaber; Ariel Goobar; Donald E. Groom; Stewart E. Harris; Peter R. Harvey; Henry D. Heetderks

The SuperNova/Acceleration Probe (SNAP) will measure precisely the cosmological expansion history over both the acceleration and deceleration epochs and thereby constrain the nature of the dark energy that dominates our universe today. The SNAP focal plane contains equal areas of optical CCDs and NIR sensors and an integral field spectrograph. Having over 150 million pixels and a field-of-view of 0.34 square degrees, the SNAP NIR system will be the largest yet constructed. With sensitivity in the range 0.9-1.7 {micro}m, it will detect Type Ia supernovae between z = 1 and 1.7 and will provide follow-up precision photometry for all supernovae. HgCdTe technology, with a cut-off tuned to 1.7 {micro}m, will permit passive cooling at 140 K while maintaining noise below zodiacal levels. By dithering to remove the effects of intrapixel variations and by careful attention to other instrumental effects, we expect to control relative photometric accuracy below a few hundredths of a magnitude. Because SNAP continuously revisits the same fields we will be able to achieve outstanding statistical precision on the photometry of reference stars in these fields, allowing precise monitoring of our detectors. The capabilities of the NIR system for broadening the science reach of SNAP are discussed.


electronic imaging | 2004

LBNL four-side buttable CCD package development

Hakeem M. Oluseyi; J. Bercovitz; Armin Karcher; Christopher D. Hernikl; Tom Miller; Michela C. Uslenghi; N. A. Roe; Chris Bebek; Stephen E. Holland; Michael E. Levi

We have developed a precision, 4-side buttable CCD package for 2kx2k and 2kx4k format devices with minimal mechanical stress on the CCD, excellent thermal properties, reliable electrical connectivity, and shim-free mounting. We report on the package design, assembly and quality assurance procedures, measurements of packaged device flatness and flatness excursions when cooled from room temperature to 140 K, package performance and plans for future development.


Proceedings of SPIE - The International Society for Optical Engineering | 2002

SNAP near infrared detectors

Gregory Tarle; C. Akerlof; G. Aldering; Rahman Amanullah; P. Astier; E. Barrelet; Christopher J. Bebek; Lars Bergström; J. Bercovitz; G. M. Bernstein; M. Bester; A. Bonissent; C. Bower; Mark L. Brown; W. Carithers; Eugene D. Commins; C. Day; Susana Elizabeth Deustua; R. DiGennaro; A. Ealet; Richard S. Ellis; M. Eriksson; Andrew S. Fruchter; J.-F. Genat; G. Goldhaber; Ariel Goobar; D. Groom; Stephen E. Harris; Peter R. Harvey; Henry D. Heetderks

The SuperNova/Acceleration Probe (SNAP) will measure precisely the cosmological expansion history over both the acceleration and deceleration epochs and thereby constrain the nature of the dark energy that dominates our universe today. The SNAP focal plane contains equal areas of optical CCDs and NIR sensors and an integral field spectrograph. Having over 150 million pixels and a field-of-view of 0.34 square degrees, the SNAP NIR system will be the largest yet constructed. With sensitivity in the range 0.9-1.7 {micro}m, it will detect Type Ia supernovae between z = 1 and 1.7 and will provide follow-up precision photometry for all supernovae. HgCdTe technology, with a cut-off tuned to 1.7 {micro}m, will permit passive cooling at 140 K while maintaining noise below zodiacal levels. By dithering to remove the effects of intrapixel variations and by careful attention to other instrumental effects, we expect to control relative photometric accuracy below a few hundredths of a magnitude. Because SNAP continuously revisits the same fields we will be able to achieve outstanding statistical precision on the photometry of reference stars in these fields, allowing precise monitoring of our detectors. The capabilities of the NIR system for broadening the science reach of SNAP are discussed.


Lawrence Berkeley National Laboratory | 2003

SNAP Satellite Focal Plane Development

Christopher J. Bebek; C. Akerlof; G. Aldering; Rahman Amanullah; Pierre Astier; Charles Baltay; E. Barrelet; S. Basa; J. Bercovitz; Lars Bergström; G.P. Berstein; M. Bester; Ralph C. Bohlin; Alain Bonissent; C. Bower; M. Campbell; W. Carithers; Eugene D. Commins; C. Day; Susana Elizabeth Deustua; R. DiGennaro; A. Ealet; Richard S. Ellis; W. Emmett; M. Eriksson; D. Fouchez; Andrew S. Fruchter; J.-F. Genat; Gerson Goldhaber; Ariel Goobar

The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R&D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics.


Astronomical Telescopes and Instrumentation | 2002

Overview of the SuperNova/Acceleration probe (SNAP)

Gregory L. Aldering; C. Akerlof; R. Amanullah; Pierre Astier; E. Barrelet; Christopher J. Bebek; Lars Bergström; J. Bercovitz; G. M. Bernstein; M. Bester; Alain Bonissent; C. Bower; W. Carithers; Eugene D. Commins; C. Day; Susana Elizabeth Deustua; R. DiGennaro; A. Ealet; Richard S. Ellis; M. Eriksson; Andrew S. Fruchter; J.-F. Genat; G. Goldhaber; Ariel Goobar; D. Groom; Stephen E. Harris; Peter R. Harvey; Henry D. Heetderks; S. Holland; Dragan Huterer


Astroparticle Physics | 2004

Weak lensing from space I: instrumentation and survey strategy

Jason Rhodes; Alexandre Refregier; Richard Massey; J. Albert; David Bacon; G. M. Bernstein; Richard S. Ellis; Bhuvnesh Jain; Alex G. Kim; M. Lampton; Timothy A. McKay; C. Akerlof; G. Aldering; R. Amanullah; Pierre Astier; Charles Baltay; E. Barrelet; Christopher J. Bebek; Lars Bergström; J. Bercovitz; M. Bester; B. Bigelow; Ralph C. Bohlin; Alain Bonissent; C. R. Bower; Mark L. Brown; M. Campbell; W. Carithers; Eugene D. Commins; C. Day

Collaboration


Dive into the J. Bercovitz's collaboration.

Top Co-Authors

Avatar

Christopher J. Bebek

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. Akerlof

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

C. Day

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Bester

University of California

View shared research outputs
Top Co-Authors

Avatar

W. Carithers

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. DiGennaro

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge