J.-C. Augereau
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.-C. Augereau.
The Astrophysical Journal | 2006
Jacqueline E. Kessler-Silacci; J.-C. Augereau; Cornelis P. Dullemond; Vincent Geers; Fred Lahuis; Neal J. Evans; Ewine F. van Dishoeck; Geoffrey A. Blake; A. C. A. Boogert; Joanna M. Brown; Jes K. Jorgensen; Claudia Knez; Klaus M. Pontoppidan
Infrared ~5-35 μm spectra for 40 solar mass T Tauri stars and 7 intermediate-mass Herbig Ae stars with circumstellar disks were obtained using the Spitzer Space Telescope as part of the c2d IRS survey. This work complements prior spectroscopic studies of silicate infrared emission from disks, which were focused on intermediate-mass stars, with observations of solar mass stars limited primarily to the 10 μm region. The observed 10 and 20 μm silicate feature strengths/shapes are consistent with source-to-source variations in grain size. A large fraction of the features are weak and flat, consistent with micron-sized grains indicating fast grain growth (from 0.1 to 1.0 μm in radius). In addition, approximately half of the T Tauri star spectra show crystalline silicate features near 28 and 33 μm, indicating significant processing when compared to interstellar grains. A few sources show large 10-to-20 μm ratios and require even larger grains emitting at 20 μm than at 10 μm. This size difference may arise from the difference in the depth into the disk probed by the two silicate emission bands in disks where dust settling has occurred. The 10 μm feature strength versus shape trend is not correlated with age or Hα equivalent width, suggesting that some amount of turbulent mixing and regeneration of small grains is occurring. The strength versus shape trend is related to spectral type, however, with M stars showing significantly flatter 10 μm features (larger grain sizes) than A/B stars. The connection between spectral type and grain size is interpreted in terms of the variation in the silicate emission radius as a function of stellar luminosity, but could also be indicative of other spectral-type-dependent factors (e.g., X-rays, UV radiation, and stellar/disk winds).
Astronomy and Astrophysics | 2011
J.-B. Le Bouquin; J. Berger; B. Lazareff; G. Zins; P. Haguenauer; L. Jocou; P. Kern; R. Millan-Gabet; Wesley A. Traub; Olivier Absil; J.-C. Augereau; M. Benisty; N. Blind; Xavier Bonfils; Pierre Bourget; A. Delboulbé; Philippe Feautrier; M. Germain; Philippe B. Gitton; D. Gillier; M. Kiekebusch; J. Kluska; Jens Knudstrup; Pierre Labeye; J.-L. Lizon; Jean-Louis Monin; Y. Magnard; F. Malbet; D. Maurel; Francois Menard
PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer (ESO, Chile) using an integrated optics combiner. The instrument has been integrated at IPAG starting in December 2009 and commissioned at the Paranal Observatory in October 2010. It provides scientific observations since November 2010. In this paper, we detail the instrumental concept, we describe the standard operational modes and the data reduction strategy. We present the typical performance and discuss how to improve them. This paper is based on laboratory data obtained during the integrations at IPAG, as well as on-sky data gathered during the commissioning at VLTI. We illustrate the imaging capability of PIONIER on the binaries deltaSco and HIP11231. PIONIER provides 6 visibilities and 3 independent closure phases in the H band, either in a broadband mode or with a low spectral dispersion (R=40), using natural light (i.e. unpolarized). The limiting magnitude is Hmag=7 in dispersed mode under median atmospheric conditions (seeing 3ms) with the 1.8m Auxiliary Telescopes. We demonstrate a precision of 0.5deg on the closure phases. The precision on the calibrated visibilities ranges from 3 to 15% depending on the atmospheric conditions. PIONIER has been installed and successfully tested as a visitor instrument for the VLTI. It permits high angular resolution imaging studies at an unprecedented level of sensitivity. The successful combination of the four 8m Unit Telescopes in March 2011 demonstrates that VLTI is ready for 4-telescope operation.
Astronomy and Astrophysics | 2006
Olivier Absil; E. Di Folco; A. M. Merand; J.-C. Augereau; V. Coudé du Foresto; Jason Paul Aufdenberg; P. Kervella; Stephen T. Ridgway; David H. Berger; Theo A. ten Brummelaar; J. Sturmann; L. Sturmann; Nils H. Turner; H. McAlister
Context. Only a handful of debris disks have been imaged up to now. Due to the need for high dynamic range and high angular resolution, very little is known about the inner planetary region, where small amounts of warm dust are expected to be found. Aims. We investigate the close neighbourhood of Vega with the help of infrared stellar interferometry and estimate the integrated K-band flux originating from the central 8 AU of the debris disk. Methods. We performed precise visibility measurements at both short (∼30 m) and long (∼150 m) baselines with the FLUOR beamcombiner installed at the CHARA Array (Mt Wilson, California) in order to separately resolve the emissions from the extended debris disk (short baselines) and from the stellar photosphere (long baselines). Results. After revising Vega’s K-band angular diameter (θUD = 3.202 ± 0.005 mas), we show that a significant deficit in squared visibility (∆V 2 = 1.88 ± 0.34%) is detected at short baselines with respect to the best-fit uniform disk stellar model. This deficit can be either attributed to the presence of a low-mass stellar companion around Vega, or as the signature of the thermal and scattered emissions from the debris disk. We show that the presence of a close companion is highly unlikely, as well as other possible perturbations (stellar morphology, calibration), and deduce that we have most probably detected the presence of dust in the close neighbourhood of Vega. The resulting flux ratio between the stellar photosphere and the debris disk amounts to 1.29 ± 0.19% within the FLUOR field-of-view (∼7.8 AU). Finally, we complement our K-band study with archival photometric and interferometric data in order to evaluate the main physical properties of the inner dust disk. The inferred properties suggest that the Vega system could be currently undergoing major dynamical perturbations.
The Astrophysical Journal | 2010
Bruno Merín; Joanna M. Brown; Isa Oliveira; Gregory J. Herczeg; Ewine F. van Dishoeck; S. Bottinelli; Neal J. Evans; Lucas A. Cieza; Loredana Spezzi; Juan M. Alcala; Paul M. Harvey; Geoffrey A. Blake; A. Bayo; Vincent Geers; F. Lahuis; Timo Prusti; J.-C. Augereau; Johan Olofsson; Frederick M. Walter; Kuenley Chiu
Understanding how disks dissipate is essential to studies of planet formation. However, identifying exactly how dust and gas dissipate is complicated due to the difficulty of finding objects that are clearly in the transition phase of losing their surrounding material. We use Spitzer Infrared Spectrograph (IRS) spectra to examine 35 photometrically selected candidate cold disks (disks with large inner dust holes). The infrared spectra are supplemented with optical spectra to determine stellar and accretion properties and 1.3 mm photometry to measure disk masses. Based on detailed spectral energy distribution modeling, we identify 15 new cold disks. The remaining 20 objects have IRS spectra that are consistent with disks without holes, disks that are observed close to edge-on, or stars with background emission. Based on these results, we determine reliable criteria to identify disks with inner holes from Spitzer photometry, and examine criteria already in the literature. Applying these criteria to the c2d surveyed star-forming regions gives a frequency of such objects of at least 4% and most likely of order 12% of the young stellar object population identified by Spitzer. We also examine the properties of these new cold disks in combination with cold disks from the literature. Hole sizes in this sample are generally smaller than in previously discovered disks and reflect a distribution in better agreement with exoplanet orbit radii. We find correlations between hole size and both disk and stellar masses. Silicate features, including crystalline features, are present in the overwhelming majority of the sample, although the 10 μm feature strength above the continuum declines for holes with radii larger than ~7 AU. In contrast, polycyclic aromatic hydrocarbons are only detected in 2 out of 15 sources. Only a quarter of the cold disk sample shows no signs of accretion, making it unlikely that photoevaporation is the dominant hole-forming process in most cases.
Astronomy and Astrophysics | 2009
Johan Olofsson; J.-C. Augereau; E. F. van Dishoeck; Bruno Merín; F. Lahuis; Jacqueline E. Kessler-Silacci; C. P. Dullemond; Isa Oliveira; Geoffrey A. Blake; A. C. A. Boogert; Joanna M. Brown; Neal J. Evans; Vincent Geers; Claudia Knez; Jean Monin; Klaus M. Pontoppidan
Aims. Dust grains in the planet-forming regions around young stars are expected to be heavily processed due to coagulation, fragmentation, and crystallization. This paper focuses on the crystalline silicate dust grains in protoplanetary disks for a statistically significant number of TTauri stars (96). Methods. As part of the cores to disks (c2d) legacy program, we obtained more than a hundred Spitzer/IRS spectra of TTauri stars, over a spectral range of 5-35 μm where many silicate amorphous and crystalline solid-state features are present. At these wavelengths, observations probe the upper layers of accretion disks up to distances of a dozen AU from the central object. Results. More than 3/4 of our objects show at least one crystalline silicate emission feature that can be essentially attributed to Mg-rich silicates. The Fe-rich crystalline silicates are largely absent in the c2d IRS spectra. The strength and detection frequency of the crystalline features seen at λ > 20 μm correlate with each other, while they are largely uncorrelated with the observational properties of the amorphous silicate 10 μm feature. This supports the idea that the IRS spectra essentially probe two independent disk regions: a warm zone (≤1 AU) emitting at ~ 10 μm and a much colder region emitting at λ > 20 μm (≤10 AU). We identify a crystallinity paradox, as the long-wavelength (λ > 20 m) crystalline silicate features are detected 3.5 times more frequently (~55% vs. ~15%) than the crystalline features arising from much warmer disk regions (λ ~ 10 μm). This suggests that the disk has an inhomogeneous dust composition within ~10 AU. The analysis of the shape and strength of both the amorphous 10 μm feature and the crystalline feature around 23 μm provides evidence for the prevalence of μm-sized (amorphous and crystalline) grains in upper layers of disks. Conclusions. The abundant crystalline silicates found far from their presumed formation regions suggest efficient outward radial transport mechanisms in the disks around TTauri stars. The presence of μm-sized grains in disk atmospheres, despite the short timescales for settling to the midplane, suggests efficient (turbulent) vertical diffusion, probably accompanied by grain-grain fragmentation to balance the expected efficient growth. In this scenario, the depletion of submicron-sized grains in the upper layers of the disks points toward removal mechanisms such as stellar winds or radiation pressure.
Astronomy and Astrophysics | 2007
Philippe Thebault; J.-C. Augereau
Context. New generations of instruments provide, or are about to provide, pan-chromatic images of debris discs and photometric measurements, that require new generations of models, in particular to account for their collisional activity. Aims. We present a new multi-annulus code for the study of collisionally evolving extended debris discs. We first aim to confirm and extend our preliminary result obtained for a single-annulus system, namely that the size distribution in realistic debris discs always departs from the theoretical collisional “equilibrium”
Astronomy and Astrophysics | 2008
Christophe Pinte; Deborah Lynne Padgett; Francois Menard; Karl R. Stapelfeldt; Glenn Schneider; J. Olofsson; Olja Panić; J.-C. Augereau; Gaspard Duchene; John E. Krist; Klaus M. Pontoppidan; Marshall D. Perrin; C. A. Grady; Jacqueline E. Kessler-Silacci; E. F. van Dishoeck; Dave Lommen; Murray D. Silverstone; Dean C. Hines; Sebastian Wolf; G. A. Blake; T. Henning; Bringfried Stecklum
\mathrm dN \propto R^{-3.5} \mathrm dR
The Astrophysical Journal | 2006
Glenn Schneider; Murray D. Silverstone; Dean C. Hines; J.-C. Augereau; Christophe Pinte; Francois Menard; John E. Krist; Mark Clampin; C. A. Grady; David A. Golimowski; D. R. Ardila; Thomas Henning; Sebastian Wolf; Jens Rodmann
power law, especially in the crucial size range of observable particles (
Astronomy and Astrophysics | 2007
E. Di Folco; Olivier Absil; J.-C. Augereau; A. Mérand; V. Coudé du Foresto; F. Thévenin; Denis Defrere; P. Kervella; Theo A. ten Brummelaar; H. McAlister; Stephen T. Ridgway; J. Sturmann; L. Sturmann; Nils H. Turner
R\la 1\,
Astronomy and Astrophysics | 2012
J. Lebreton; J.-C. Augereau; Wing-Fai Thi; Aki Roberge; J. Donaldson; Glenn Schneider; Sarah T. Maddison; Francois Menard; Pablo Riviere-Marichalar; Geoffrey S. Mathews; I. Kamp; C. Pinte; W. R. F. Dent; D. Barrado; Gaspard Duchene; Jean-François Gonzalez; C. A. Grady; G. Meeus; E. Pantin; Jonathan P. Williams; Peter Woitke
cm), where it displays a characteristic wavy pattern. We also study how debris discs density distributions, scattered light luminosity profiles, and Spectral Energy Distributions (SEDs) are affected by the coupled effect of collisions and radial mixing due to radiation pressure affected small grains. Methods. The size distribution evolution is modeled over 10 orders of magnitude, going from μ m-sized grains to 50 km-sized bodies. The model takes into account the crucial influence of radiation pressure-affected small grains. We consider the collisional evolution of a fiducial, idealized