Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Ertel is active.

Publication


Featured researches published by S. Ertel.


Astronomy and Astrophysics | 2013

DUst around NEarby Stars. The survey observational results

C. Eiroa; A. Mora; B. Montesinos; Olivier Absil; J.-Ch. Augereau; A. Bayo; G. Bryden; W. C. Danchi; C. del Burgo; S. Ertel; M. Fridlund; A. M. Heras; Alexander V. Krivov; R. Launhardt; R. Liseau; T. Löhne; J. Maldonado; G. L. Pilbratt; Aki Roberge; J. Rodmann; J. Sanz-Forcada; E. Solano; Karl R. Stapelfeldt; Philippe Thebault; Sebastian Wolf; D. R. Ardila; Maria Jesus Arevalo; C. Beichmann; V. Faramaz; B. M. González-García

Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 mu m were obtained, complemented in some cases with observations at 70 mu m, and at 250, 350 and 500 mu m using SPIRE. The observing strategy was to integrate as deep as possible at 100 mu m to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of similar to 12.1% +/- 5% before Herschel to similar to 20.2% +/- 2%. A significant fraction (similar to 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160 mu m range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.


Astronomy and Astrophysics | 2012

Modelling the huge, Herschel-resolved debris ring around HD 207129

T. Löhne; J.-C. Augereau; S. Ertel; C. Eiroa; A. Mora; Olivier Absil; Karl R. Stapelfeldt; Philippe Thebault; A. Bayo; C. del Burgo; W. C. Danchi; Alexander V. Krivov; J. Lebreton; Géraldine Letawe; Pierre Magain; J. Maldonado; B. Montesinos; G. L. Pilbratt; G. J. White; Sebastian Wolf

Astronomy and Astrophysics 537 (2013): A110 Reproduced with permission from Astronomy & Astrophysics


Astronomy and Astrophysics | 2013

A near-infrared interferometric survey of debris disc stars : III. First statistics based on 42 stars observed with CHARA/FLUOR

Olivier Absil; Denis Defrere; V. Coudé du Foresto; E. Di Folco; A. Mérand; J.-C. Augereau; S. Ertel; Charles Hanot; P. Kervella; B. Mollier; Nicholas William Scott; Xiao Che; John D. Monnier; Nathalie D. Thureau; Peter G. Tuthill; Theo A. ten Brummelaar; H. McAlister; J. Sturmann; L. Sturmann; Nils H. Turner

Context. Dust is expected to be ubiquitous in extrasolar planetary systems owing to the dynamical activity of minor bodies. Inner dust populations are, however, still poorly known because of the high contrast and small angular separation with respect to their host star, and yet, a proper characterisation of exozodiacal dust is mandatory for the design of future Earth-like planet imaging missions. Aims. We aim to determine the level of near-infrared exozodiacal dust emission around a sample of 42 nearby main sequence stars with spectral types ranging from A to K and to investigate its correlation with various stellar parameters and with the presence of cold dust belts. Methods. We use high-precision K-band visibilities obtained with the FLUOR interferometer on the shortest baseline of the CHARA array. The calibrated visibilities are compared with the expected visibility of the stellar photosphere to assess whether there is an additional, fully resolved circumstellar emission source. Results. Near-infrared circumstellar emission amounting to about 1% of the stellar flux is detected around 13 of our 42 target stars. Follow-up observations showed that one of them (eps Cep) is associated with a stellar companion, while another one was detected around what turned out to be a giant star (kap CrB). The remaining 11 excesses found around single main sequence stars are most probably associated with hot circumstellar dust, yielding an overall occurrence rate of 28 +8 % for our (biased) sample. We show that the occurrence rate of bright exozodiacal discs correlates with spectral type, K-band excesses being more frequent around A-type stars. It also correlates with the presence of detectable far-infrared excess emission in the case of solar-type stars. Conclusions. This study provides new insight into the phenomenon of bright exozodiacal discs, showing that hot dust populations are probably linked to outer dust reservoirs in the case of solar-type stars. For A-type stars, no clear conclusion can be made regarding the origin of the detected near-infrared excesses.


Astronomy and Astrophysics | 2010

Cold DUst around NEarby Stars (DUNES). First results A resolved exo-Kuiper belt around the solar-like star zeta(2) Ret

C. Eiroa; D. Fedele; J. Maldonado; B. M. González-García; Jens Rodmann; A. M. Heras; G. L. Pilbratt; J.-C. Augereau; A. Mora; B. Montesinos; D. R. Ardila; G. Bryden; R. Liseau; Karl R. Stapelfeldt; R. Launhardt; E. Solano; A. Bayo; Olivier Absil; Maria Jesus Arevalo; D. Barrado; C. Beichmann; W. C. Danchi; C. del Burgo; S. Ertel; M. Fridlund; Misato Fukagawa; R. Gutiérrez; E. Grün; Inga Kamp; Alexander V. Krivov

We present the first far-IR observations of the solar-type stars delta Pav, HR 8501, 51 Peg and zeta(2) Ret, taken within the context of the DUNES Herschel open time key programme (OTKP). This project uses the PACS and SPIRE instruments with the objective of studying infrared excesses due to exo-Kuiper belts around nearby solar-type stars. The observed 100 mu m fluxes from delta Pav, HR 8501, and 51 Peg agree with the predicted photospheric fluxes, excluding debris disks brighter than L-dust/L-star similar to 5 x 10(-7) (1 sigma level) around those stars. A flattened, disk-like structure with a semi-major axis of similar to 100 AU in size is detected around zeta(2) Ret. The resolved structure suggests the presence of an eccentric dust ring, which we interpret as an exo-Kuiper belt with L-dust/L-star approximate to 10(-5).


Astronomy and Astrophysics | 2013

An interferometric study of the Fomalhaut inner debris disk - III. Detailed models of the exozodiacal disk and its origin

J. Lebreton; R. Van Lieshout; J.-C. Augereau; Olivier Absil; B. Mennesson; M. Kama; C. Dominik; Amy Bonsor; J. Vandeportal; H. Beust; Denis Defrere; S. Ertel; V. Faramaz; Philip M. Hinz; Q. Kral; A.-M. Lagrange; W. Liu; Philippe Thebault

Context. Debris disks are thought to be extrasolar analogs to the solar system planetesimal belts. The star Fomalhaut harbors a cold debris belt at 140 AU comparable to the Edgeworth-Kuiper belt, as well as evidence of a warm dust component, unresolved by singledish telescopes, which is suspected of being a bright analog to the solar system’s zodiacal dust. Aims. Interferometric observations obtained with the VLTI/VINCI instrument and the Keck Interferometer Nuller have identified nearand mid-infrared excesses attributed respectively to hot and warm exozodiacal dust residing in the inner few AU of the Fomalhaut environment. We aim to characterize the properties of this double inner dust belt and to unveil its origin. Methods. We performed parametric modeling of the exozodiacal disk (“exozodi”) using the GRaTeR radiative transfer code to reproduce the interferometric data, complemented by mid- to far-infrared photometric measurements from Spitzer and Herschel �� . A detailed treatment of sublimation temperatures was introduced to explore the hot population at the size-dependent sublimation rim. We then used an analytical approach to successively testing several source mechanisms for the dust and suspected parent bodies. Results. A good fit to the multiwavelength data is found by two distinct dust populations: (1) a population of very small (0.01 to 0.5 μm), hence unbound, hot dust grains confined in a narrow region (∼0.1–0.3 AU) at the sublimation rim of carbonaceous material; (2) a population of bound grains at ∼2 AU that is protected from sublimation and has a higher mass despite its fainter flux level. We propose that the hot dust is produced by the release of small carbon grains following the disruption of dust aggregates that originate in the warm component. A mechanism, such as gas braking, is required to further confine the small grains for a long enough time. In situ dust production could hardly be ensured for the age of the star, so we conclude that the observed amount of dust is triggered by intense dynamical activity. Conclusions. Fomalhaut may be representative of exozodis that are currently being surveyed at near and mid-infrared wavelengths worldwide. We propose a framework for reconciling the “hot exozodi phenomenon” with theoretical constraints: the hot component of Fomalhaut is likely the “tip of the iceberg” since it could originate in the more massive, but fainter, warm dust component residing near the ice line. This inner disk exhibits interesting morphology and can be considered a prime target for future exoplanet research.


Astronomy and Astrophysics | 2014

An independent determination of Fomalhaut b's orbit and the dynamical effects on the outer dust belt

H. Beust; J.-C. Augereau; Amy Bonsor; James R. Graham; Paul Kalas; J. Lebreton; Anne-Marie Lagrange; S. Ertel; V. Faramaz; Philippe Thebault

The nearby star Fomalhaut harbours a cold, moderately eccentric dust belt with a sharp inner edge near 133 au. A low-mass, common proper motion companion (Fom b), was discovered near the inner edge and was identified as a planet candidate that could account for the belt morphology. However, the most recent orbit determination based on four epochs of astrometry over eight years reveals a highly eccentric orbit that appears to cross the belt in the sky plane projection. We perform here a full orbital determination based on the available astrometric data to independently validate the orbit estimates previously presented. Adopting our values for the orbital elements and their associated uncertainties, we then study the dynamical interaction between the planet and the dust ring, to check whether the proposed disk sculpting scenario by Fom b is plausible. We used a dedicated MCMC code to derive the statistical distributions of the orbital elements of Fom b. Then we used symplectic N-body integration to investigate the dynamics of the dust belt, as perturbed by a single planet. Different attempts were made assuming different masses for Fom b. We also performed a semi-analytical study to explain our results. Our results are in good agreement with others regarding the orbit of Fom b. We find that the orbit is highly eccentric, is close to apsidally aligned with the belt, and has a moderate mutual inclination relative to the belt plane of. If coplanar, this orbit crosses the disk. Our dynamical study then reveals that the observed planet could sculpt a transient belt configuration with a similar eccentricity to what is observed, but it would not be simultaneously apsidally aligned with the planet. This transient configuration only occurs a short time after the planet is placed on such an orbit (assuming an initially circular disk), a time that is inversely proportional to the planets mass, and that is in any case much less than the 440 Myr age of the star. We constrain how long the observed dust belt could have survived with Fom b on its current orbit, as a function of its possible mass. This analysis leads us to conclude that Fom b is likely to have low mass, that it is unlikely to be responsible for the sculpting of the belt, and that it supports the hypothesis of a more massive, less eccentric planet companion Fom c.


Astronomy and Astrophysics | 2016

A near-infrared interferometric survey of debris-disc stars. V. PIONIER search for variability

S. Ertel; Denis Defrere; Olivier Absil; J.-B. Le Bouquin; J.-C. Augereau; J. Berger; N. Blind; Amy Bonsor; A.-M. Lagrange; J. Lebreton; Lindsay Marion; J. Milli; J. Olofsson

Context. Extended circumstellar emission has been detected within a few 100 milli-arcsec around ≳10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other techniques, should they yield similar results or non-detections, can provide strong constraints on the origin of the emission. They can also reveal the variability of the phenomenon. Aims. We aim to demonstrate the persistence of the phenomenon over the timescale of a few years and to search for variability of our previously detected excesses. Methods. Using Very Large Telescope Interferometer (VLTI)/Precision Integrated Optics Near Infrared ExpeRiment (PIONIER) in H band we have carried out multi-epoch observations of the stars for which a near-infrared excess was previously detected using the same observation technique and instrument. The detection rates and distribution of the excesses from our original survey and the follow-up observations are compared statistically. A search for variability of the excesses in our time series is carried out based on the level of the broadband excesses. Results. In 12 of 16 follow-up observations, an excess is re-detected with a significance of > 2σ, and in 7 of 16 follow-up observations significant excess (> 3σ) is re-detected. We statistically demonstrate with very high confidence that the phenomenon persists for the majority of the systems. We also present the first detection of potential variability in two sources. Conclusions. We conclude that the phenomenon responsible for the excesses persists over the timescale of a few years for the majority of the systems. However, we also find that variability intrinsic to a target can cause it to have no significant excess at the time of a specific observation.


Astronomy and Astrophysics | 2011

Herschel discovery of a new class of cold, faint debris discs

C. Eiroa; A. Mora; Alexander V. Krivov; B. Montesinos; Olivier Absil; D. R. Ardila; Maria Jesus Arevalo; J.-C. Augereau; A. Bayo; W. C. Danchi; C. del Burgo; S. Ertel; M. Fridlund; B. M. González-García; A. M. Heras; J. Lebreton; R. Liseau; J. Maldonado; G. Meeus; D. Montes; G. L. Pilbratt; Aki Roberge; J. Sanz-Forcada; Karl R. Stapelfeldt; Philippe Thebault; G. J. White; Sebastian Wolf

We present Herschel PACS 100 and 160 μm observations of the solar-type stars α Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel open time key programme (OTKP) DUNES (DUst around NEarby S tars). Our observations show small infrared excesses at 160 μm for all three stars. HD 210277 also shows a small excess at 100 μm, while the 100 μ mfl uxes of α Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. Both α Men and HD 88230 are spatially resolved in the PACS 160 μm images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from ∼115 to ≤250 AU. The estimated black body temperatures from the 100 and 160 μm fluxes are 22 K, and the fractional luminosity of the cold dust is Ldust/L� ∼ 10 −6 , close to the luminosity of the solar-system’s Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars, so they cannot be explained easily invoking “classical” debris disc models.


Astronomy and Astrophysics | 2011

A Herschel resolved far-infrared dust ring around HD 207129

T. Löhne; B. Montesinos; Alexander V. Krivov; C. Eiroa; Olivier Absil; G. Bryden; J. Maldonado; A. Mora; J. Sanz-Forcada; D. R. Ardila; J.-C. Augereau; A. Bayo; C. del Burgo; W. C. Danchi; S. Ertel; D. Fedele; M. Fridlund; J. Lebreton; B. M. González-García; R. Liseau; G. Meeus; Sebastian Müller; G. L. Pilbratt; Aki Roberge; Karl R. Stapelfeldt; Philippe Thebault; G. J. White; Sebastian Wolf

Context. Dusty debris discs around main sequence stars are thought to be the result of continuous collisional grinding of planetesimals in the system. The majority of these systems are unresolved and analysis of the dust properties is limited by the lack of information regarding the dust location. Aims. The Herschel DUNES key program is observing 133 nearby, Sun-like stars (<20 pc, FGK spectral type) in a volume limited survey to constrain the absolute incidence of cold dust around these stars by detection of far infrared excess emission at flux levels comparable to the Edgeworth-Kuiper belt (EKB). Methods. We have observed the Sun-like star HD 207129 with Herschel PACS and SPIRE. In all three PACS bands we resolve a ring-like structure consistent with scattered light observations. Using α Bootis as a reference point spread function (PSF), we deconvolved the images, clearly resolving the inner gap in the disc at both 70 and 100 μm. Results. We have resolved the dust-producing planetesimal belt of a debris disc at 100 μm for the first time. We measure the radial profile and fractional luminosity of the disc, and compare the values to those of discs around stars of similar age and/or spectral type, placing this disc in context of other resolved discs observed by Herschel/DUNES.


Astronomy and Astrophysics | 2011

Multi-wavelength modeling of the spatially resolved debris disk of HD107146

S. Ertel; Sebastian Wolf; Stanimir Metchev; Glenn Schneider; John M. Carpenter; Michael R. Meyer; Lynne A. Hillenbrand; Murray D. Silverstone

Aims. We aim to constrain the location, composition, and dynamical state of planetesimal populations and dust around the young, sun-like (G2V) star HD107146. Methods. We consider coronagraphic observations obtained with the Advanced Camera for Surveys (HST/ACS) onboard the Hubble Space Telescope (HST) in broad V (lambda(c) approximate to 0.6 mu m) and broad I (lambda(c) approximate to 0.8 mu m) filters, a resolved 1.3 mm map obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA), Spitzer/IRS low resolution spectra in the range of 7.6 mu m to 37.0 mu m, and the spectral energy distribution (SED) of the object at wavelengths ranging from 3.5 mu m to 3.1 mm. We complement these data with new coronagraphic high resolution observations of the debris disk using the Near Infrared Camera and Multi-Object Spectrometer (HST/NICMOS) aboard the HST in the F110W filter (lambda(c) approximate to 1.1 mu m). The SED and images of the disk in scattered light as well as in thermal reemission are combined in our modeling using a parameterized model for the disk density distribution and optical properties of the dust. Results. A detailed analytical model of the debris disk around HD107146 is presented that allows us to reproduce the almost entire set of spatially resolved and unresolved multi-wavelength observations. Considering the variety of complementary observational data, we are able to break the degeneracies produced by modeling SED data alone. We find the disk to be an extended ring with a peak surface density at 131 AU. Furthermore, we find evidence for an additional, inner disk probably composed of small grains released at the inner edge of the outer disk and moving inwards due to Poynting-Robertson drag. A birth ring scenario (i.e., a more or less broad ring of planetesimals creating the dust disk trough collisions) is found to be the most likely explanation of the ringlike shape of the disk.

Collaboration


Dive into the S. Ertel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.-C. Augereau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

W. C. Danchi

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

C. Eiroa

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

B. Montesinos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denis Defrere

Steward Health Care System

View shared research outputs
Top Co-Authors

Avatar

G. Bryden

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. del Burgo

Dublin Institute for Advanced Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge