Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. C. Costa is active.

Publication


Featured researches published by J. C. Costa.


Bioresource Technology | 2012

Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge

J. C. Costa; P. R. Gonçalves; A. M. Nobre; M. M. Alves

Biochemical methane potential of four species of Ulva and Gracilaria genus was assessed in batch assays at mesophilic temperature. The results indicate a higher specific methane production (per volatile solids) for one of the Ulva sp. compared with other macroalgae and for tests running with 2.5% of total solids (196±9 L CH(4) kg(-1)VS). Considering that macroalgae can potentially be a post treatment of municipal wastewater for nutrients removal, co-digestion of macroalgae with waste activated sludge (WAS) was assessed. The co-digestion of macroalgae (15%) with WAS (85%) is feasible at a rate of methane production 26% higher than WAS alone without decreasing the overall biodegradability of the substrate (42-45% methane yield). The use of anoxic marine sediment as inoculum had no positive effect on the methane production in batch assays. The limiting step of the overall anaerobic digestion process was the hydrolysis.


Bioresource Technology | 2012

Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry litter

J. C. Costa; S. G. Barbosa; M. M. Alves; D. Z. Sousa

The biochemical methane potential (BMP) of raw poultry litter waste was assessed in batch assays. Biological co-treatment with Clostridium cellulolyticum, Caldicellulosiruptor saccharolyticum and Clostridium thermocellum as bioaugmentation strains, and thermochemical pre-treatments with lime and sodium hydroxide performed at different temperatures and pressures were applied as strategies to improve the BMP by favouring the hydrolysis of the cellulolytic material in the waste. Anaerobic digestion of the raw waste allowed a specific methane production of 145 ± 14 LCH(4)kg(-1)VS, with 1% total solids and 0.72 g VS(inoculum)g(-1)VS(waste). The pre- and co-treatments contributed to a significant increase (up to 74%) in the waste solubilisation when using C. saccharolyticum, but methane production did not improve considerably. Therefore, the conversion of soluble organic matter to methane was the limiting step of the anaerobic digestion process of poultry litter waste.


Water Research | 2012

Strategies for lipids and phenolics degradation in the anaerobic treatment of olive mill wastewater

Marta R. Gonçalves; J. C. Costa; I. P. Marques; M. M. Alves

Strategies are proposed for the anaerobic treatment of lipid and phenolic-rich effluents, specifically the raw olive mill wastewater (OMW). Two reactors were operated under OMW influent concentrations from 5 to 48 g COD L(-1) and Hydraulic Retention Time between 10 and 5 days. An intermittent feeding was applied whenever the reactors showed a severe decay in the methane yield. This strategy improved the mineralization of oleate and palmitate, which were the main accumulated Long-Chain Fatty Acids (LCFA), and also promoted the removal of resilient phenolic compounds, reaching remarkable removal efficiencies of 60% and 81% for two parallel reactors at the end of a feed-less period. A maximum biogas production of 1.4m(3)m(-3)d(-1) at an Organic Loading Rate of 4.8 kg COD m(-3)d(-1) was obtained. Patterns of individual LCFA oxidation during the OMW anaerobic digestion are presented and discussed for the first time. The supplementation of a nitrogen source boosted immediately the methane yield from 21 and 18 to 76 and 93% in both reactors. The typical problems of sludge flotation and washout during the anaerobic treatment of this oily wastewater were overcome by biomass retention, according to the Inverted Anaerobic Sludge Blanket (IASB) reactor concepts. This work demonstrates that it is possible to avoid a previous detoxification step by implementing adequate operational strategies to the anaerobic treatment of OMW.


Waste Management | 2012

Evaluation of the biomethane potential of solid fish waste

M. Eiroa; J. C. Costa; M. M. Alves; Christian Kennes; María Carmen Veiga

Manufacturing processes in fish canning industries generate a considerable amount of solid waste that can be digested anaerobically. The aim of this research was to study the biochemical methane potential of different solid fish waste. For tuna, sardine and needle fish waste, around 0.47g COD-CH(4)/g COD(added) was obtained in batch experiments with 1%TS; whereas for mackerel waste, the methane production attained 0.59g COD-CH(4)/g COD(added). The increase in the waste/inoculum ratio, from 1.1-1.3 to 2.8-3.3g VS(waste)/g VS(inoculum), led to overload due to VFA and LCFA accumulation. Afterward, co-digestion assays of fish waste with gorse were undertaken but the biochemical methane potential did not improve.


Bioresource Technology | 2014

Design of experiments to assess pre-treatment and co-digestion strategies that optimize biogas production from macroalgae Gracilaria vermiculophylla

João Vítor Oliveira; M. M. Alves; J. C. Costa

A design of experiments was applied to evaluate different strategies to enhance the methane yield of macroalgae Gracilaria vermiculophylla. Biochemical Methane Potential (BMP) of G. vermiculophylla after physical pre-treatment (washing and maceration) reached 481±9 L CH4 kg(-1) VS, corresponding to a methane yield of 79±2%. No significant effects were achieved in the BMP after thermochemical pre-treatment, although the seaweeds solubilisation increased up to 44%. Co-digestion with glycerol or sewage sludge has proved to be effective for increasing the methane production. Addition of 2% glycerol (w:w) increased the BMP by 18%, achieving almost complete methanation of the substrate (96±3%). Co-digestion of seaweed and secondary sludge (15:85%, TS/TS) increased the BMP by 25% (605±4 L CH4 kg(-1) VS) compared to the seaweed individual digestion.


Bioresource Technology | 2009

Principal component analysis and quantitative image analysis to predict effects of toxics in anaerobic granular sludge.

J. C. Costa; M. M. Alves; E. C. Ferreira

Principal component analysis (PCA) was applied to datasets gathering morphological, physiological and reactor performance information, from three toxic shock loads (SL1 - 1.6 mg(detergent)/L; SL2 - 3.1mg(detergent)/L; SL3 - 40 mg(solvent)/L) applied in an expanded granular sludge bed (EGSB) reactor. The PCA allowed the visualization of the main effects caused by the toxics, by clustering the samples according to its operational phase, exposure or recovery. The aim was to investigate the variables or group of variables that mostly contribute for the early detection of operational problems. The morphological parameters showed to be sensitive enough to detect the operational problems even before the COD removal efficiency decreased. As observed by the high loadings in the plane defined by the first and second principal components. PCA defined a new latent variable t[1], gathering the most relevant variability in dataset, that showed an immediate variation after the toxics were fed to the reactors. t[1] varied 262%, 254% and 80%, respectively, in SL1, SL2 and SL3. The high loadings/weights of the morphological parameters associated with this new variable express its influence in shock load monitoring and control, and consequently in operational problems recognition.


Bioresource Technology | 2015

Optimization of biogas production from Sargassum sp. using a design of experiments to assess the co-digestion with glycerol and waste frying oil

João Vítor Oliveira; M. M. Alves; J. C. Costa

A design of experiments was adopted to assess the optimal conditions for methane production from the macroalgae Sargassum sp. co-digested with glycerol (Gly) and waste frying oil (WFO). Three variables were tested: % total solids of algae (%TSSargassumsp.), co-substrate concentration (gGly/WFOL(-1)), and co-substrate type (Gly or WFO). The biochemical methane potential (BMP) of Sargassum sp. was 181±1L CH4kg(-1) COD. The co-digestion with Gly and WFO increased the BMP by 56% and 46%, respectively. The methane production rate (k), showed similar behaviour as the BMP, increasing 38% and 19% with Gly and WFO, respectively. The higher BMP (283±18L CH4kg(-1) COD) and k (65.9±2.1L CH4kg(-1) CODd(-1)) was obtained in the assay with 0.5% TS and 3.0gGlyL(-1). Co-digestion with glycerol or WFO is a promising process to enhance the BMP from the macroalgae Sargassum sp.


Environmental Science and Pollution Research | 2013

Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment : a review

J. C. Costa; D. P. Mesquita; A. L. Amaral; M. M. Alves; E. C. Ferreira

Quantitative image analysis techniques have gained an undeniable role in several fields of research during the last decade. In the field of biological wastewater treatment (WWT) processes, several computer applications have been developed for monitoring microbial entities, either as individual cells or in different types of aggregates. New descriptors have been defined that are more reliable, objective, and useful than the subjective and time-consuming parameters classically used to monitor biological WWT processes. Examples of this application include the objective prediction of filamentous bulking, known to be one of the most problematic phenomena occurring in activated sludge technology. It also demonstrated its usefulness in classifying protozoa and metazoa populations. In high-rate anaerobic processes, based on granular sludge, aggregation times and fragmentation phenomena could be detected during critical events, e.g., toxic and organic overloads. Currently, the major efforts and needs are in the development of quantitative image analysis techniques focusing on its application coupled with stained samples, either by classical or fluorescent-based techniques. The use of quantitative morphological parameters in process control and online applications is also being investigated. This work reviews the major advances of quantitative image analysis applied to biological WWT processes.


International Journal of Algebra and Computation | 2004

TAMENESS OF THE PSEUDOVARIETY LS1

J. C. Costa; Maria Lurdes Teixeira

The notion of κ-tameness of a pseudovariety was introduced by Almeida and Steinberg and is a strong property which implies decidability of pseudovarieties. In this paper we prove that the pseudovariety LSl, of local semilattices, is κ-tame.


Portugaliae Mathematica | 2007

Complete reducibility of systems of equations with respect to R

Jorge Almeida; J. C. Costa; Marc Zeitoun

It is shown that the pseudovariety R of all finite R-trivial semigroups is completely reducible with respect to the canonical signature. Informally, if the variables in a finite system of equations with rational constraints may be evaluated by pseudowords so that each value belongs to the closure of the corresponding rational constraint and the system is verified in R, then there is some such evaluation which is “regular”, that is one in which, additionally, the pseudowords only involve multiplications and ω-powers.

Collaboration


Dive into the J. C. Costa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Z. Sousa

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge