Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. M. Alves is active.

Publication


Featured researches published by M. M. Alves.


Water Science and Technology | 2009

Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays

Irini Angelidaki; M. M. Alves; D. Bolzonella; Liliana Borzacconi; J.L. Campos; Alan J. Guwy; S.V. Kalyuzhnyi; P. Jenicek; J.B. van Lier

The application of anaerobic digestion technology is growing worldwide because of its economic and environmental benefits. As a consequence, a number of studies and research activities dealing with the determination of the biogas potential of solid organic substrates have been carrying out in the recent years. Therefore, it is of particular importance to define a protocol for the determination of the ultimate methane potential for a given solid substrates. In fact, this parameter determines, to a certain extent, both design and economic details of a biogas plant. Furthermore, the definition of common units to be used in anaerobic assays is increasingly requested from the scientific and engineering community. This paper presents some guidelines for biomethane potential assays prepared by the Task Group for the Anaerobic Biodegradation, Activity and Inhibition Assays of the Anaerobic Digestion Specialist Group of the International Water Association. This is the first step for the definition of a standard protocol.


Water Research | 2001

Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part II: Oleic acid toxicity and biodegradability

M. M. Alves; J. A. Mota Vieira; R. M. Álvares Pereira; M. A. Pereira; Manuel Mota

Oleic acid toxicity and biodegradability were followed during long-term operation of two similar anaerobic fixed-bed units. When treating an oleate based effluent, the sludge from the bioreactor that was acclimated with lipids during the first operation period, showed a higher tolerance to oleic acid toxicity (IC50 = 137 mg/l) compared with the sludge fed with a non-fat substrate (IC50 = 80 mg/l). This sludge showed also the highest biodegradation capacity of oleic acid, achieving maximum methane production rates between 33 and 46 mlCH4(STP)/gVS.day and maximum percentages of methanization between 85 and 98% for the range of concentrations between 500 and 900 mg oleate/l. When oleate was the sole carbon source fed to both digesters, the biomass became encapsulated with organic matter, possibly oleate or an intermediate of its degradation, e.g. stearate that was degraded at a maximum rate of 99 mlCH4(STP)/gVS.day. This suggests the possibility of using adsorption-degradation cycles for the treatment of LCFA based effluents. Both tolerance to toxicity and biodegradability of oleic acid were improved by acclimatization with lipids or oleate below a threshold concentration.


Microbial Biotechnology | 2009

Waste lipids to energy: how to optimize methane production from long‐chain fatty acids (LCFA)

M. M. Alves; M. A. Pereira; D. Z. Sousa; A. J. Cavaleiro; Merijn Amilcare Picavet; Hauke Smidt; Alfons J. M. Stams

The position of high‐rate anaerobic technology (HR‐AnWT) in the wastewater treatment and bioenergy market can be enhanced if the range of suitable substrates is expanded. Analyzing existing technologies, applications and problems, it is clear that, until now, wastewaters with high lipids content are not effectively treated by HR‐AnWT. Nevertheless, waste lipids are ideal potential substrates for biogas production, since theoretically more methane can be produced, when compared with proteins or carbohydrates. In this minireview, the classical problems of lipids methanization in anaerobic processes are discussed and new concepts to enhance lipids degradation are presented. Reactors operation, feeding strategies and prospects of technological developments for wastewater treatment are discussed. Long‐chain fatty acids (LCFA) degradation is accomplished by syntrophic communities of anaerobic bacteria and methanogenic archaea. For optimal performance these syntrophic communities need to be clustered in compact aggregates, which is often difficult to achieve with wastewaters that contain fats and lipids. Driving the methane production from lipids/LCFA at industrial scale without risk of overloading and inhibition is still a challenge that has the potential for filling a gap in the existing processes and technologies for biological methane production associated to waste and wastewater treatment.


Bioresource Technology | 2012

Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge

J. C. Costa; P. R. Gonçalves; A. M. Nobre; M. M. Alves

Biochemical methane potential of four species of Ulva and Gracilaria genus was assessed in batch assays at mesophilic temperature. The results indicate a higher specific methane production (per volatile solids) for one of the Ulva sp. compared with other macroalgae and for tests running with 2.5% of total solids (196±9 L CH(4) kg(-1)VS). Considering that macroalgae can potentially be a post treatment of municipal wastewater for nutrients removal, co-digestion of macroalgae with waste activated sludge (WAS) was assessed. The co-digestion of macroalgae (15%) with WAS (85%) is feasible at a rate of methane production 26% higher than WAS alone without decreasing the overall biodegradability of the substrate (42-45% methane yield). The use of anoxic marine sediment as inoculum had no positive effect on the methane production in batch assays. The limiting step of the overall anaerobic digestion process was the hydrolysis.


FEMS Microbiology Ecology | 2009

Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids

D. Z. Sousa; Hauke Smidt; M. M. Alves; Alfons J. M. Stams

Syntrophic relationships are the key for biodegradation in methanogenic environments. We review the ecological and physiological features of syntrophic communities involved in the degradation of saturated and unsaturated long-chain fatty acids (LCFA), as well as their potential application to convert lipids/fats containing waste to biogas. Presently, about 14 species have been described with the ability to grow on fatty acids in syntrophy with methanogens, all belonging to the families Syntrophomonadaceae and Syntrophaceae. The principle pathway of LCFA degradation is through beta-oxidation, but the initial steps in the conversion of unsaturated LCFA are unclear. Communities enriched on unsaturated LCFA also degrade saturated LCFA, but the opposite generally is not the case. For efficient methane formation, the physical and inhibitory effects of LCFA on methanogenesis need to be considered. LCFA adsorbs strongly to biomass, which causes encapsulation of active syntrophic communities and hampers diffusion of substrate and products in and out of the biomass. Quantification of archaea by real-time PCR analysis suggests that potential LCFA inhibitory effect towards methanogens might be reversible. Rather, the conversion of adsorbed LCFA in batch assays was shown to result in a significant increase of archaeal cell numbers in anaerobic sludge samples.


Applied and Environmental Microbiology | 2007

Microbial communities involved in anaerobic degradation of unsaturated or saturated long chain fatty acids

D. Z. Sousa; M. A. Pereira; Alfons J. M. Stams; M. M. Alves; Hauke Smidt

ABSTRACT Anaerobic long-chain fatty acid (LCFA)-degrading bacteria were identified by combining selective enrichment studies with molecular approaches. Two distinct enrichment cultures growing on unsaturated and saturated LCFAs were obtained by successive transfers in medium containing oleate and palmitate, respectively, as the sole carbon and energy sources. Changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE) profiling of PCR-amplified 16S rRNA gene fragments. Prominent DGGE bands of the enrichment cultures were identified by 16S rRNA gene sequencing. A significant part of the retrieved 16S rRNA gene sequences was most similar to those of uncultured bacteria. Bacteria corresponding to predominant DGGE bands in oleate and palmitate enrichment cultures clustered with fatty acid-oxidizing bacteria within Syntrophomonadaceae and Syntrophobacteraceae families. A low methane yield, corresponding to 9 to 18% of the theoretical value, was observed in the oleate enrichment, and acetate, produced according to the expected stoichiometry, was not further converted to methane. In the palmitate enrichment culture, the acetate produced was completely mineralized and a methane yield of 48 to 70% was achieved from palmitate degradation. Furthermore, the oleate enrichment culture was able to use palmitate without detectable changes in the DGGE profile. However, the palmitate-specialized consortia degraded oleate only after a lag phase of 3 months, after which the DGGE profile had changed. Two predominant bands appeared, and sequence analysis showed affiliation with the Syntrophomonas genus. These bands were also present in the oleate enrichment culture, suggesting that these bacteria are directly involved in oleate degradation, emphasizing possible differences between the degradation of unsaturated and saturated LCFAs.


Water Research | 2001

Effect of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part I: Biofilm growth and activity

M. M. Alves; J. A. Mota Vieira; R. M. Álvares Pereira; M. A. Pereira; Manuel Mota

Two similar anaerobic fixed-bed bioreactors which allowed the biomass to be periodically withdrawn were run in parallel. After feeding each digester with synthetic dairy wastes of different lipid content (Period I), both digesters were fed with increasing sodium oleate concentrations with skim milk as co-substrate (Period II) and oleate as the sole carbon source (Period III). In Period I, the digester fed with lipids was more efficient and exhibited lower levels of volatile fatty acids than the digester fed without lipids. The biofilm built up in the presence of lipids was thinner, but more resistant to the presence of oleate than the biofilm formed in the absence of lipids, which lost 53% of its solids after contacting with oleic acid. The specific methanogenic activity with butyrate as substrate was enhanced in the presence of lipids, but no significant effect was detected on the acetoclastic and hydrogenophilic activities, which remained similar for both digesters along the trial period.


Environmental Protection Strategies for Sustainable Development | 2012

Dyes—Environmental Impact and Remediation

Luciana Pereira; M. M. Alves

Dyes are an important class of synthetic organic compounds used in many industries, especially textiles. Consequently, they have become common industrial environmental pollutants during their synthesis and later during fibre dyeing. Textile industries are facing a challenge in the field of quality and productivity due to the globalization of the world market. As the highly competitive atmosphere and the ecological parameters become more stringent, the prime concern of the textile processors is to be aware of the quality of their products and also the environmental friendliness of the manufacturing processes. This in turn makes it essential for innovations and changes in these processes, and investigations of appropriate and environmentally friendly treatment technologies or their residues. The large-scale production and extensive application of synthetic dyes can cause considerable environmental pollution, making it a serious public concern. Legislation on the limits of colour discharge has become increasingly rigid. There is a considerable urgent need to develop treatment methods that are effective in eliminating dyes from their waste. Physicochemical and biological methods have been studied and applied, although each has its advantages and disadvantages, with the choice being based on the wastewater characteristics, available technology and economic factors. Some industrial-scale wastewater treatment systems are now available; however, these are neither fully effective for complete colour removal nor do they address water recycling.


Bioresource Technology | 2009

Detection and quantification of long chain fatty acids in liquid and solid samples and its relevance to understand anaerobic digestion of lipids

L. Neves; M. A. Pereira; M. Mota; M. M. Alves

A method for long chain fatty acids (LCFA) extraction, identification and further quantification by gas chromatography was developed and its application to liquid and solid samples collected from anaerobic digesters was demonstrated. After validation, the usefulness of this method was demonstrated in a cow manure digester receiving pulses of an industrial effluent containing high lipid content. From the LCFA analysis data it was showed that the conversion of oleic acid, the main LCFA fed to the reactor, by the adapted biomass became faster and more effective along the successive pulses. Conversely, the accumulation of palmitic acid in the solid phase suggests that degradation of this LCFA, under these conditions, is less effective.


Bioresource Technology | 2011

Thermophilic co-digestion of organic fraction of municipal solid wastes with FOG wastes from a sewage treatment plant : reactor performance and microbial community monitoring

Lucía Martín-González; Rita Castro; M. A. Pereira; M. M. Alves; Xavier Font; Teresa Vicent

Working at thermophilic conditions instead of mesophilic, and also the addition of a co-substrate, are both the ways to intend to improve the anaerobic digestion of the source-collected organic fraction of municipal solid wastes (SC-OFMSW). Addition of sewage treatment plant fat, oil and grease wastes (STP-FOGW), that are nowadays sent to landfill, would represent an opportunity to recover a wasted methane potential and, moreover, improve the whole process. In this study, after a first period feeding only SC-OFMSW, a co-digestion step was performed maintaining thermophilic conditions. During the co-digestion period enhancements in biogas production (52%) and methane yield (36%) were achieved. In addition, monitoring of microbial structure by using PCR-DGGE and cloning techniques showed that bacterial community profiles clustered in two distinct groups, before and after the extended contact with STP-FOGW, being more affected by the STP-FOGW addition than the archaeal one.

Collaboration


Dive into the M. M. Alves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Z. Sousa

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfons J. M. Stams

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge