Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.C. Lopes is active.

Publication


Featured researches published by J.C. Lopes.


Journal of Dairy Science | 2016

Effects of rumen-protected methionine, lysine, and histidine on lactation performance of dairy cows

F. Giallongo; M.T. Harper; J. Oh; J.C. Lopes; H. Lapierre; R.A. Patton; C. Parys; I. Shinzato; A.N. Hristov

The objective of this study was to evaluate the effects of supplementing a metabolizable protein (MP)-deficient diet with rumen-protected (RP) Met, Lys, and His, individually or combined, on the performance of lactating dairy cows. The experiment was a 9-wk randomized complete block design with 72 Holstein cows. Following a 2-wk covariate period, cows were blocked by days in milk, milk yield, and parity, and randomly assigned to 1 of the following 6 treatments: (1) MP-adequate diet [MPA; +243g/d MP balance, according to the National Research Council (2001) requirements]; (2) MP-deficient diet (MPD; -54g/d MP balance); (3) MPD supplemented with RPMet (MPDM); (4) MPD supplemented with RPLys (MPDL); (5) MPD supplemented with RPHis (MPDH); and (6) MPD supplemented with RPMet, RPLys, and RPHis (MPDMLH). Dry matter intake (DMI), yields of milk and milk components (fat, protein, lactose) and energy-corrected milk (ECM), feed and ECM feed efficiencies, and milk and plasma urea N were decreased by MPD, compared with MPA. Supplementation of the MPD diet with RPLys increased milk protein content and plasma glucose concentration and tended to increase milk urea N. Addition of RPHis tended to increase DMI, increased milk protein concentration, and numerically increased yields of milk fat, protein, and ECM. In addition to the trends for increased DMI and milk fat content, and higher milk protein concentration, supplementation of the 3 RP AA also increased yields of milk fat, protein, and ECM and ECM feed efficiency. Relative to MPA, milk N efficiency tended to be increased by MPD. Concentrations of plasma essential AA (except Met and Thr) were decreased by MPD compared with MPA. Supplementation of RPMet, RPLys, and RPHis increased plasma Met (except for MPDM), Lys, and His concentrations, respectively. Cows fed MPD had lower blood hemoglobin concentration and numerically higher plasma ghrelin than cows fed MPA. Concentration of total saturated fatty acids in milk fat were or tended to be higher for MPD compared with MPA and MPDMLH, respectively. Concentration of total polyunsaturated and yield of milk odd- and branched-chain fatty acids were or tended to be decreased by MPD compared with MPA. Overall, the results of this study confirm our previous data and suggest that His stimulates DMI and the combination of the 3 RP AA (Met, Lys, and His) has the potential to improve milk and milk component yields in dairy cows fed MP-deficient diets.


Journal of Dairy Science | 2016

Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows

J.C. Lopes; L.F. de Matos; M.T. Harper; F. Giallongo; J. Oh; D. Gruen; S. Ono; Maik Kindermann; Stephane Duval; A.N. Hristov

The objective of this crossover experiment was to investigate the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission, methane isotopic composition, and rumen fermentation and microbial profile in lactating dairy cows. The experiment involved 6 ruminally cannulated late-lactation Holstein cows assigned to 2 treatments: control and 3NOP (60 mg/kg of feed dry matter). Compared with the control, 3NOP decreased methane emission by 31% and increased hydrogen emission from undetectable to 1.33 g/d. Methane emissions per kilogram of dry matter intake and milk yield were also decreased 34% by 3NOP. Milk production and composition were not affected by 3NOP, except milk fat concentration was increased compared with the control. Concentrations of total VFA and propionate in ruminal fluid were not affected by treatment, but acetate concentration tended to be lower and acetate-to-propionate ratio was lower for 3NOP compared with the control. The 3NOP decreased the molar proportion of acetate and increase those of propionate, butyrate, valerate, and isovalerate. Deuterium-to-hydrogen ratios of methane and the abundance of (13)CH3D were similar between treatments. Compared with the control, minor (4‰) depletion in the (13)C/(12)C ratio was observed for 3NOP. Genus composition of methanogenic archaea (Methanobrevibacter, Methanosphaera, and Methanomicrobium) was not affected by 3NOP, but the proportion of methanogens in the total cell counts tended to be decreased by 3NOP. Prevotella spp., the predominant bacterial genus in ruminal contents in this experiment, was also not affected by 3NOP. Compared with the control, Ruminococcus and Clostridium spp. were decreased and Butyrivibrio spp. was increased by 3NOP. This experiment demonstrated that a substantial inhibition of enteric methane emission by 3NOP in dairy cows was accompanied with increased hydrogen emission and decreased acetate-to-propionate ratio; however, neither an effect on rumen archaeal community composition nor a significant change in the isotope composition of methane was observed.


Journal of Dairy Science | 2017

Effect of high-oleic-acid soybeans on production performance, milk fatty acid composition, and enteric methane emission in dairy cows

J.C. Lopes; M.T. Harper; F. Giallongo; J. Oh; L. Smith; A.M. Ortega-Perez; S.A. Harper; A. Melgar; D.M. Kniffen; R.A. Fabin; A.N. Hristov

The objective of this study was to investigate the effect of 3 soybean sources differing in fatty acid profile and processing method on productivity, milk composition, digestibility, rumen fermentation, and enteric methane emission in lactating dairy cows. The soybean sources were conventional, high-linoleic-acid variety extruded soybean meal (ESBM; 8.7% ether extract with 15% oleic and 54% linoleic acids); extruded Plenish (DuPont Pioneer, Johnston, IA), high-oleic-acid variety soybean meal (EPSBM; 8.4% ether extract with 73% oleic and 8% linoleic acids); and whole, heated Plenish soybeans (WPSB; 20.2% ether extract). The study involved 15 Holstein cows in a replicated 3 × 3 Latin square design experiment with three 28-d periods. The inclusion rate of the soybean sources in the diet was (dry matter basis) 17.1, 17.1, and 7.4% for ESBM, EPSBM, and WPSB, respectively, which resulted in ether extract concentration of the diets of 3.99, 3.94, and 4.18%, respectively. Compared with ESBM, the Plenish diets tended to increase dry matter intake and decreased feed efficiency (but had no effect on energy-corrected milk feed efficiency). The Plenish diets increased milk fat concentration on average by 5.6% and tended to increase milk fat yield, compared with ESBM. The WPSB diet tended to increased milk true protein compared with the extruded soybean meal diets. Treatments had no effect on rumen fermentation and enteric methane or carbon dioxide emissions, except pH was higher for WPSB versus EPSBM. The Plenish diets decreased the prevalence of Ruminococcus and increased that of Eubacterium and Treponema in whole ruminal contents. Total-tract apparent digestibility of organic matter and crude protein were decreased by WPSB compared with ESBM and EPSBM. Compared with the other treatments, urinary N excretion was increased by EPSBM and fecal N excretion was greater for WPSB. Treatments had marked effects on milk fatty acid profile. Generally, the Plenish diets increased mono-unsaturated (mostly cis-9 18:1) and decreased polyunsaturated, total trans-, and conjugated linoleic fatty acids concentrations in milk fat. In this study, compared with conventional, high-linoleic-acid variety extruded soybean meal, the Plenish soybean diets increased milk fat concentration and tended to increase fat yield, decreased feed efficiency, and modified milk fatty acid profile in a manner expected from the greater concentration of oleic acid in Plenish soybean oil.


Journal of Dairy Science | 2017

Using brown midrib 6 dwarf forage sorghum silage and fall-grown oat silage in lactating dairy cow rations

M.T. Harper; J. Oh; F. Giallongo; J.C. Lopes; Gregory W. Roth; A.N. Hristov

Double cropping and increasing crop diversity could improve dairy farm economic and environmental sustainability. In this experiment, corn silage was partially replaced with 2 alternative forages, brown midrib-6 brachytic dwarf forage sorghum (Sorghum bicolor) or fall-grown oat (Avena sativa) silage, in the diet of lactating dairy cows. We investigated the effect on dry matter (DM) intake, milk yield (MY), milk components and fatty acid profile, apparent total-tract nutrient digestibility, N utilization, enteric methane emissions, and income over feed cost. We analyzed the in situ DM and neutral detergent fiber disappearance of the alternative forages versus corn silage and alfalfa haylage. Sorghum was grown in the summer and harvested in the milk stage. Oats were grown in the fall and harvested in the boot stage. Compared with corn silage, neutral detergent fiber and acid detergent fiber concentrations were higher in the alternative forages. Lignin content was highest for sorghum silage and similar for corn silage and oat silage. The alternative forages had less than 1% starch compared with the approximately 35% starch in the corn silage. Ruminal in situ DM effective degradability was similar, although statistically different, for corn silage and oat silage, but lower for sorghum silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, sorghum or oat silages were included at 10% of dietary DM, replacing corn silage. Sorghum silage inclusion decreased DM intake, MY, and milk protein content but increased milk fat and maintained energy-corrected MY similar to the control. Oat silage had no effect on DM intake, MY, or milk components compared to the control. The oat silage diet increased apparent total-tract digestibility of dietary nutrients, except starch, whereas the sorghum diet slightly decreased DM, organic matter, crude protein, and starch digestibility. Cows consuming the oat silage diet had higher milk urea N and urinary urea N concentrations. Milk N efficiency was decreased by the sorghum diet. Diet did not affect enteric methane or carbon dioxide emissions. This study shows that oat silage can partially replace corn silage at 10% of the diet DM with no effect on MY. Brown midrib sorghum silage harvested at the milk stage with <1% starch may decrease DM intake and MY in dairy cows.


Journal of Dairy Science | 2016

Short communication: Preference for flavored concentrate premixes by dairy cows.

M.T. Harper; J. Oh; F. Giallongo; J.C. Lopes; H. Weeks; J. Faugeron; A.N. Hristov

Flavor preferences may be used to stimulate feed intake in dairy cows, which may improve use of robotic milking systems and increase feed intake of sick cows. A cafeteria-design experiment was used to determine if dairy cows have flavor preferences. Sixteen lactating Holstein cows averaging 197±32d in milk, 1.9±0.8 lactations, 27.8±4.2kg/d of dry matter intake, and 41.5±7.4kg/d of milk yield were involved in the experiment. Cows were offered 7 flavored concentrate premixes (FCP) and 1 control premix. The FCP flavors were anise, fenugreek, honey, orange, thyme, molasses, and vanilla; the absence of flavor, neutral, acted as a control. The inclusion rate of the flavors in FCP was 250 to 300g/t on an as-is basis. Cows were not adapted to the flavors before the experiment. Cows were housed in a tiestall barn and offered, on each day, 4 different FCP (1kg each) in plastic bins placed in front of each cow. The experiment lasted 6 consecutive days. Each FCP was presented to each cow once every 2d, 2h after the morning feeding. Flavors and position of the bins in front of the cows were randomized. As a result, each flavor was presented to each cow 3 times during the experiment, at 3 different bin locations. Each cow had access to the FCP for 5min from the time they started eating. Eating time and amount eaten were recorded. The vanilla and fenugreek FCP were consumed the most, at 408 and 371g/5-min offering, respectively, whereas the orange and anise FCP were consumed the least, at 264 and 239g/5-min offering, respectively. Similarly, cows spent the most time eating the vanilla and fenugreek FCP at 99 and 75 s/offering, respectively, and the least amount of time eating the orange and anise FCP at 49 and 50 s/offering, respectively. We detected an effect of bin position: the 2 center FCP were consumed more than the outer 2 FCP. Flavor had no effect on consumption rate. In conclusion, relative to the control, concentrate intake was not affected by flavor, but dairy cows may prefer vanilla or fenugreek flavors when offered a novel choice.


Journal of Dairy Science | 2018

Short communication: Variability in milk urea nitrogen and dairy total mixed ration composition in the northeastern United States

A.N. Hristov; M.T. Harper; J. Oh; F. Giallongo; J.C. Lopes; G. Cudoc; J. Clay; R. Ward; L.E. Chase

The main objective of this survey was to examine variability in milk urea nitrogen (MUN) for Dairy Herd Improvement Association (DHIA) herds in the northeastern United States (the Northeast), examine trends in dairy cow diet composition, and determine potential relationships for MUN and diet composition. Trends in milk fat and protein concentrations, milk yield, days in milk on test day, and lactation number of the cows were also evaluated. The data set for the survey included 10,839,461 DHIA dairy cow records from 2004 to 2015 for 13 states (CT, DE, MA, MD, ME, NH, NJ, NY, PA, RI, VA, VT, and WV) and was retrieved from Dairy Records Management Systems (Raleigh, NC). Average (across states and years) milk yield, milk fat, and milk protein were 31.6 ± 0.24 kg/d, 3.85 ± 0.021%, and 3.13 ± 0.013%, respectively. No obvious trends were observed for milk fat or protein content, but milk yield steadily increased during the survey period. Milk urea N concentration averaged 13.3 ± 0.13 mg/dL, with no obvious or consistent trends. Examination of variability in dairy feed cost and all milk price for the Northeast indicated that high MUN generally coincided with high feed cost and high milk price. For the diet composition survey, 9,707 records of total mixed ration (TMR) analyses, unrelated to the milk composition data set, from the Cumberland Valley Analytical Service (Maugansville, MD) database were examined. Concentration of TMR crude protein (CP) decreased from 17.1% in 2007 to 16.4% in 2015, but there was not an obvious trend in soluble protein concentration. Concentration of TMR neutral detergent fiber (NDF) and 24-h in vitro NDF degradability declined steadily during the survey period and was accompanied by a steady increase in TMR starch concentration. Examination of these unrelated data sets revealed lack of correlation between MUN and diet chemical composition. Thus, we conclude that individual cow MUN in Northeast dairy herds fluctuated between 2004 and 2015. It appeared that MUN followed variability in feed cost; however, ration feed ingredient data were not available to better define the reasons for the variations in MUN.


Journal of Dairy Science | 2017

乳牛の生産性能,乳脂肪酸組成および腸内メタン放出に及ぼす高オレイン酸大豆の影響【Powered by NICT】

J.C. Lopes; M.T. Harper; F. Giallongo; J. Oh; L. Smith; A.M. Ortega-Perez; S.A. Harper; A. Melgar; D.M. Kniffen; R.A. Fabin; A.N. Hristov


Journal of Dairy Science | 2016

乳牛におけるメタン及び水素放出,メタン同位体的特性及び第1胃発酵に及ぼす3‐ニトロオキシプロパノールの影響

J.C. Lopes; L.F. de Matos; M.T. Harper; F. Giallongo; J. Oh; D. Gruen; S. Ono; Maik Kindermann; Stephane Duval; A.N. Hristov


Journal of Dairy Science | 2016

短報:乳牛によるフレーバ濃縮物プレミックスのための選好【Powered by NICT】

M.T. Harper; J. Oh; F. Giallongo; J.C. Lopes; H. Weeks; J. Faugeron; A.N. Hristov


Journal of Animal Science | 2016

1420 Effects of feeding triticale and wheat silages on feed intake, milk production and composition, and enteric methane production in lactating dairy cows.

M.T. Harper; J. Oh; F. Giallongo; J.C. Lopes; Gregory W. Roth; A.N. Hristov

Collaboration


Dive into the J.C. Lopes's collaboration.

Top Co-Authors

Avatar

A.N. Hristov

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

F. Giallongo

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

J. Oh

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

M.T. Harper

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

A.M. Ortega-Perez

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

D.M. Kniffen

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

L. Smith

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

A. Melgar

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

D. Gruen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge