Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M.T. Harper is active.

Publication


Featured researches published by M.T. Harper.


Proceedings of the National Academy of Sciences of the United States of America | 2015

An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production

A.N. Hristov; J. Oh; F. Giallongo; T. Frederick; M.T. Harper; H. Weeks; Antonio Ferriani Branco; Peter J. Moate; M. H. Deighton; S. Richard O. Williams; Maik Kindermann; Stephane Duval

Significance Methane from enteric fermentation in the ruminant digestive system is a major contributor to anthropogenic greenhouse gas emissions in the United States and worldwide. Methane is also a net loss of feed energy to the animal. This study was undertaken to investigate the effect of a methane inhibitor on enteric methane emissions from lactating dairy cows. The experiment demonstrated that, under industry-relevant conditions, the inhibitor persistently decreased by 30% enteric methane emissions, without negatively affecting animal productivity. The spared methane energy was partially used for tissue synthesis, which led to a greater body weight gain by the inhibitor-treated cows. If adopted, this mitigation practice could lead to a substantial reduction of greenhouse gas emissions from the ruminant livestock sector. A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries.


Journal of Visualized Experiments | 2015

The Use of an Automated System (GreenFeed) to Monitor Enteric Methane and Carbon Dioxide Emissions from Ruminant Animals.

A.N. Hristov; J. Oh; F. Giallongo; T. Frederick; H. Weeks; Patrick R. Zimmerman; M.T. Harper; Rada A. Hristova; R. Scott Zimmerman; Antonio Ferriani Branco

Ruminant animals (domesticated or wild) emit methane (CH4) through enteric fermentation in their digestive tract and from decomposition of manure during storage. These processes are the major sources of greenhouse gas (GHG) emissions from animal production systems. Techniques for measuring enteric CH4 vary from direct measurements (respiration chambers, which are highly accurate, but with limited applicability) to various indirect methods (sniffers, laser technology, which are practical, but with variable accuracy). The sulfur hexafluoride (SF6) tracer gas method is commonly used to measure enteric CH4 production by animal scientists and more recently, application of an Automated Head-Chamber System (AHCS) (GreenFeed, C-Lock, Inc., Rapid City, SD), which is the focus of this experiment, has been growing. AHCS is an automated system to monitor CH4 and carbon dioxide (CO2) mass fluxes from the breath of ruminant animals. In a typical AHCS operation, small quantities of baiting feed are dispensed to individual animals to lure them to AHCS multiple times daily. As the animal visits AHCS, a fan system pulls air past the animal’s muzzle into an intake manifold, and through an air collection pipe where continuous airflow rates are measured. A sub-sample of air is pumped out of the pipe into non-dispersive infra-red sensors for continuous measurement of CH4 and CO2 concentrations. Field comparisons of AHCS to respiration chambers or SF6 have demonstrated that AHCS produces repeatable and accurate CH4 emission results, provided that animal visits to AHCS are sufficient so emission estimates are representative of the diurnal rhythm of rumen gas production. Here, we demonstrate the use of AHCS to measure CO2 and CH4 fluxes from dairy cows given a control diet or a diet supplemented with technical-grade cashew nut shell liquid.


Journal of Dairy Science | 2016

Effects of rumen-protected methionine, lysine, and histidine on lactation performance of dairy cows

F. Giallongo; M.T. Harper; J. Oh; J.C. Lopes; H. Lapierre; R.A. Patton; C. Parys; I. Shinzato; A.N. Hristov

The objective of this study was to evaluate the effects of supplementing a metabolizable protein (MP)-deficient diet with rumen-protected (RP) Met, Lys, and His, individually or combined, on the performance of lactating dairy cows. The experiment was a 9-wk randomized complete block design with 72 Holstein cows. Following a 2-wk covariate period, cows were blocked by days in milk, milk yield, and parity, and randomly assigned to 1 of the following 6 treatments: (1) MP-adequate diet [MPA; +243g/d MP balance, according to the National Research Council (2001) requirements]; (2) MP-deficient diet (MPD; -54g/d MP balance); (3) MPD supplemented with RPMet (MPDM); (4) MPD supplemented with RPLys (MPDL); (5) MPD supplemented with RPHis (MPDH); and (6) MPD supplemented with RPMet, RPLys, and RPHis (MPDMLH). Dry matter intake (DMI), yields of milk and milk components (fat, protein, lactose) and energy-corrected milk (ECM), feed and ECM feed efficiencies, and milk and plasma urea N were decreased by MPD, compared with MPA. Supplementation of the MPD diet with RPLys increased milk protein content and plasma glucose concentration and tended to increase milk urea N. Addition of RPHis tended to increase DMI, increased milk protein concentration, and numerically increased yields of milk fat, protein, and ECM. In addition to the trends for increased DMI and milk fat content, and higher milk protein concentration, supplementation of the 3 RP AA also increased yields of milk fat, protein, and ECM and ECM feed efficiency. Relative to MPA, milk N efficiency tended to be increased by MPD. Concentrations of plasma essential AA (except Met and Thr) were decreased by MPD compared with MPA. Supplementation of RPMet, RPLys, and RPHis increased plasma Met (except for MPDM), Lys, and His concentrations, respectively. Cows fed MPD had lower blood hemoglobin concentration and numerically higher plasma ghrelin than cows fed MPA. Concentration of total saturated fatty acids in milk fat were or tended to be higher for MPD compared with MPA and MPDMLH, respectively. Concentration of total polyunsaturated and yield of milk odd- and branched-chain fatty acids were or tended to be decreased by MPD compared with MPA. Overall, the results of this study confirm our previous data and suggest that His stimulates DMI and the combination of the 3 RP AA (Met, Lys, and His) has the potential to improve milk and milk component yields in dairy cows fed MP-deficient diets.


Journal of Dairy Science | 2016

Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows

J.C. Lopes; L.F. de Matos; M.T. Harper; F. Giallongo; J. Oh; D. Gruen; S. Ono; Maik Kindermann; Stephane Duval; A.N. Hristov

The objective of this crossover experiment was to investigate the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission, methane isotopic composition, and rumen fermentation and microbial profile in lactating dairy cows. The experiment involved 6 ruminally cannulated late-lactation Holstein cows assigned to 2 treatments: control and 3NOP (60 mg/kg of feed dry matter). Compared with the control, 3NOP decreased methane emission by 31% and increased hydrogen emission from undetectable to 1.33 g/d. Methane emissions per kilogram of dry matter intake and milk yield were also decreased 34% by 3NOP. Milk production and composition were not affected by 3NOP, except milk fat concentration was increased compared with the control. Concentrations of total VFA and propionate in ruminal fluid were not affected by treatment, but acetate concentration tended to be lower and acetate-to-propionate ratio was lower for 3NOP compared with the control. The 3NOP decreased the molar proportion of acetate and increase those of propionate, butyrate, valerate, and isovalerate. Deuterium-to-hydrogen ratios of methane and the abundance of (13)CH3D were similar between treatments. Compared with the control, minor (4‰) depletion in the (13)C/(12)C ratio was observed for 3NOP. Genus composition of methanogenic archaea (Methanobrevibacter, Methanosphaera, and Methanomicrobium) was not affected by 3NOP, but the proportion of methanogens in the total cell counts tended to be decreased by 3NOP. Prevotella spp., the predominant bacterial genus in ruminal contents in this experiment, was also not affected by 3NOP. Compared with the control, Ruminococcus and Clostridium spp. were decreased and Butyrivibrio spp. was increased by 3NOP. This experiment demonstrated that a substantial inhibition of enteric methane emission by 3NOP in dairy cows was accompanied with increased hydrogen emission and decreased acetate-to-propionate ratio; however, neither an effect on rumen archaeal community composition nor a significant change in the isotope composition of methane was observed.


Journal of Dairy Science | 2016

Short communication: Comparison of the GreenFeed system with the sulfur hexafluoride tracer technique for measuring enteric methane emissions from dairy cows

A.N. Hristov; J. Oh; F. Giallongo; T. Frederick; M.T. Harper; H. Weeks; Antonio Ferriani Branco; William J. Price; Peter J. Moate; M.H. Deighton; S.R.O. Williams; Maik Kindermann; Stephane Duval

The objective of this study was to compare 2 commonly used techniques for measuring methane emissions from ruminant animals: the GreenFeed (GF) system and the sulfur hexafluoride (SF6) technique. The study was part of a larger experiment in which a methane inhibitor, 3-nitrooxypropanol, fed at 4 application rates (0, 40, 60, and 80 mg/kg of feed dry matter) decreased enteric methane emission by an average of 30% (measured by both GF and SF6) in a 12-wk experiment with 48 lactating Holstein cows fed a total mixed ration. The larger experiment used a randomized block design and was conducted in 2 phases (February to May, phase 1, and June to August, phase 2), with 2 sets of 24 cows in each phase. Using both GF and SF6 techniques, methane emission data were collected simultaneously during experimental wk 2, 6, and 12 (phase 1) and 2, 9, and 12 (phase 2), which corresponded to a total of 6 sampling periods. During each sampling period, 8 spot samples of gas emissions (staggered over a 3-d period) were collected from each cow using GF, as well as 3×24-h collections using the SF6 technique. Methane emission data were averaged per cow for the statistical analysis. The mean methane emission was 373 (standard deviation=96.3) and 405 (standard deviation=156) g/cow per day for GF and SF6, respectively. Coefficients of variation for the 2 methods were 25.8 and 38.6%, respectively; correlation and concordance between the 2 methods were 0.40 and 0.34, respectively. The difference in methane emission between the 2 methods (SF6 - GF) within treatment was from 46 to 144 and 24 to 27 g/d for phases 1 and 2, respectively. In the conditions of this experiment, the SF6 technique produced larger variability in methane emissions than the GF method. The overall difference between the 2 methods was on average about 8%, but was not consistent over time, likely influenced by barn ventilation and background methane and SF6 concentrations.


Journal of Dairy Science | 2017

Effect of high-oleic-acid soybeans on production performance, milk fatty acid composition, and enteric methane emission in dairy cows

J.C. Lopes; M.T. Harper; F. Giallongo; J. Oh; L. Smith; A.M. Ortega-Perez; S.A. Harper; A. Melgar; D.M. Kniffen; R.A. Fabin; A.N. Hristov

The objective of this study was to investigate the effect of 3 soybean sources differing in fatty acid profile and processing method on productivity, milk composition, digestibility, rumen fermentation, and enteric methane emission in lactating dairy cows. The soybean sources were conventional, high-linoleic-acid variety extruded soybean meal (ESBM; 8.7% ether extract with 15% oleic and 54% linoleic acids); extruded Plenish (DuPont Pioneer, Johnston, IA), high-oleic-acid variety soybean meal (EPSBM; 8.4% ether extract with 73% oleic and 8% linoleic acids); and whole, heated Plenish soybeans (WPSB; 20.2% ether extract). The study involved 15 Holstein cows in a replicated 3 × 3 Latin square design experiment with three 28-d periods. The inclusion rate of the soybean sources in the diet was (dry matter basis) 17.1, 17.1, and 7.4% for ESBM, EPSBM, and WPSB, respectively, which resulted in ether extract concentration of the diets of 3.99, 3.94, and 4.18%, respectively. Compared with ESBM, the Plenish diets tended to increase dry matter intake and decreased feed efficiency (but had no effect on energy-corrected milk feed efficiency). The Plenish diets increased milk fat concentration on average by 5.6% and tended to increase milk fat yield, compared with ESBM. The WPSB diet tended to increased milk true protein compared with the extruded soybean meal diets. Treatments had no effect on rumen fermentation and enteric methane or carbon dioxide emissions, except pH was higher for WPSB versus EPSBM. The Plenish diets decreased the prevalence of Ruminococcus and increased that of Eubacterium and Treponema in whole ruminal contents. Total-tract apparent digestibility of organic matter and crude protein were decreased by WPSB compared with ESBM and EPSBM. Compared with the other treatments, urinary N excretion was increased by EPSBM and fecal N excretion was greater for WPSB. Treatments had marked effects on milk fatty acid profile. Generally, the Plenish diets increased mono-unsaturated (mostly cis-9 18:1) and decreased polyunsaturated, total trans-, and conjugated linoleic fatty acids concentrations in milk fat. In this study, compared with conventional, high-linoleic-acid variety extruded soybean meal, the Plenish soybean diets increased milk fat concentration and tended to increase fat yield, decreased feed efficiency, and modified milk fatty acid profile in a manner expected from the greater concentration of oleic acid in Plenish soybean oil.


Journal of Dairy Science | 2017

Inclusion of wheat and triticale silage in the diet of lactating dairy cows

M.T. Harper; J. Oh; F. Giallongo; Gregory W. Roth; A.N. Hristov

The objective of this experiment was to partially replace corn silage with 2 alternative forages, wheat (Triticum aestivum) or triticale (X Triticosecale) silages at 10% of the diet dry matter (DM), and investigate the effects on dairy cow productivity, nutrient utilization, enteric CH4 emissions, and farm income over feed costs. Wheat and triticale were planted in the fall as cover crops and harvested in the spring at the boot stage. Neutral- and acid-detergent fiber and lignin concentrations were higher in the wheat and triticale silages compared with corn silage. The forages had similar ruminal in situ effective degradability of DM. Both alternative forages had 1% starch or less compared with the approximately 35% starch in corn silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, wheat or triticale silages were included at 10% of dietary DM, replacing corn silage. Dry matter intake was not affected by diet, but both wheat and triticale silage decreased yield of milk (41.4 and 41.2 vs. 42.7 ± 5.18 kg/d) and milk components, compared with corn silage. Milk fat from cows fed the alternative forage diets contained higher concentrations of 4:0, 6:0, and 18:0 and tended to have lower concentrations of total trans fatty acids. Apparent total-tract digestibility of DM and organic matter was decreased in the wheat silage diet, and digestibility of neutral-and acid-detergent fiber was increased in the triticale silage diet. The wheat and triticale silage diets resulted in higher excretion of urinary urea, higher milk urea N, and lower milk N efficiency compared with the corn silage diet. Enteric CH4 emission per kilogram of energy-corrected milk was highest in the triticale silage diet, whereas CO2 emission was decreased by both wheat and triticale silage. This study showed that, at milk production of around 42 kg/d, wheat silage and triticale silage can partially replace corn silage DM and not affect DM intake, but milk yield may decrease slightly. For dairy farms in need of more forage, triticale or wheat double cropped with corn silage may be an appropriate cropping strategy.


Journal of Dairy Science | 2017

Effects of rumen-protected Capsicum oleoresin on immune responses in dairy cows intravenously challenged with lipopolysaccharide

J. Oh; M.T. Harper; F. Giallongo; D.M. Bravo; E.H. Wall; A.N. Hristov

The objective of this experiment was to investigate the effects of rumen-protected Capsicum oleoresin (RPC) on productivity and immune responses including feed intake, milk yield and composition, white and red blood cells, lipid peroxidation, and blood concentration of cortisol, haptoglobin, glucose, and insulin in lactating dairy cows experimentally challenged with lipopolysaccharide (LPS). The experiment was a replicated 3 × 3 Latin square design with 9 multiparous Holstein cows in three 28-d periods. Treatments were 0 (control), 100, and 200 mg of RPC/cow per day, mixed with small portions of the total mixed ration and top-dressed. Bacterial LPS was intravenously administered at 1.0 μg/kg of body weight in the last week of each experimental period, and blood samples were collected at 0, 2, 4, 8, and 24 h after administration. Dry matter intake, milk yield, and white blood cells including neutrophils, lymphocytes, monocytes, and eosinophils were decreased, and rectal temperature, hemoglobin, and serum concentrations of cortisol and haptoglobin were increased by LPS. Red blood cells, platelets, and plasma concentration of thiobarbituric acid reactive substances were not affected by LPS. Dry matter intake, milk yield, and milk composition in the 5 d post-LPS challenge were not affected by RPC. Rectal temperature, white blood cells, red blood cells, hemoglobin, and platelets were also not affected by RPC. Compared with the control, RPC tended to decrease cortisol at 2 h following LPS challenge and decreased haptoglobin concentration in serum across sampling points. Concentration of thiobarbituric acid reactive substances in plasma was decreased by RPC at 24 h post-LPS challenge. Glucose and insulin were not affected by RPC, but serum insulin concentration at 8 h was lowered by RPC compared to the control. Collectively, RPC had no or subtle effects on feed intake, milk yield and composition, rectal temperature, white and red blood cells, and serum glucose and insulin concentration in dairy cows challenged by LPS. However, RPC tended to decrease cortisol and decreased concentrations of haptoglobin and thiobarbituric acid reactive substances in blood following LPS challenge. Data suggest that dietary supplementation of RPC may modulate acute phase responses induced by bacterial infection in lactating dairy cows.


Journal of Dairy Science | 2017

Histidine deficiency has a negative effect on lactational performance of dairy cows

F. Giallongo; M.T. Harper; J. Oh; C. Parys; I. Shinzato; A.N. Hristov

A 10-wk randomized complete block design experiment with 24 Holstein cows was conducted to investigate the long-term effects of feeding a His-deficient diet on lactational performance of dairy cows. Cows were blocked by days in milk, milk yield, and parity, and randomly assigned to 1 of the following 2 treatments: (1) His-adequate diet [HAD; providing +166 g/d over metabolizable protein (MP) requirements, according to the National Research Council (2001) and digestible His (dHis) supply of 68 g/d, or 2.5% of MP requirements] and (2) His-deficient diet (HDD; +37 g/d over MP requirements and dHis supply of 49 g/d, or 1.9% of MP requirements). Both HAD and HDD were supplemented with rumen-protected (RP) Met and Lys supplying digestible Met and digestible Lys at 2.4 and 2.4% and 7.2 and 7.1% of MP requirements, respectively. At the end of the 10-wk experiment, HDD was supplemented with RPHis (HDD+RPHis; total dHis supply of 61 g/d, or 2.4% of MP requirements) for an additional 9 d. Dry matter intake (DMI; 25.4 and 27.1 kg/d, standard error of the mean = 0.41), yields of milk (37.6 and 40.5 kg/d, standard error of the mean = 0.62), protein and lactose, energy-corrected milk, and milk and plasma urea-N were decreased by HDD compared with HAD. Feed and energy-corrected milk feed efficiencies, milk fat, protein and lactose concentrations, body weight, and body condition score of the cows were not affected by treatment. Apparent total-tract digestibility of dry and organic matter, crude protein, and neutral detergent fiber, and excretion of urinary N and urea-N were decreased by HDD compared with HAD. Concentration of plasma leptin tended to be decreased for HDD compared with HAD. Plasma concentrations of EAA (His, Leu, Lys, Val) and carnosine decreased and total EAA tended to be decreased in cows fed HDD compared with HAD. Muscle concentrations of free His, Leu, and Val decreased and Gly and β-alanine tended to be increased by HDD compared with HAD. Cows fed HDD had a lower blood hemoglobin concentration than cows fed HAD. At the end of the 10-wk study, the 9-d supplementation of HDD with RPHis (i.e., HDD+RPHis) increased DMI and plasma His, and tended to increase energy-corrected milk yield and plasma carnosine, compared with HDD. In conclusion, feeding a diet deficient in dHis supplying adequate MP, digestible Met, and digestible Lys affected negatively lactational performance of dairy cows. These results confirm our previous findings that low dietary His supply can impair DMI, yields of milk and milk protein, and blood hemoglobin in dairy cows.


Journal of Dairy Science | 2016

Effects of rumen-protected Capsicum oleoresin on productivity and responses to a glucose tolerance test in lactating dairy cows

J. Oh; M.T. Harper; F. Giallongo; D.M. Bravo; E.H. Wall; A.N. Hristov

The objective of this experiment was to investigate the effects of rumen-protected Capsicum oleoresin (RPC) supplementation on feed intake, milk yield and composition, nutrient utilization, fecal microbial ecology, and responses to a glucose tolerance test in lactating dairy cows. Nine multiparous Holstein cows were used in a replicated 3 × 3 Latin square design balanced for residual effects with three 28-d periods. Each period consisted of 14 d for adaptation and 14 d for data collection and sampling. Treatments were 0 (control), 100, and 200 mg of RPC/cow per day. They were mixed with a small portion of the total mixed ration and top-dressed. Glucose tolerance test was conducted once during each experimental period by intravenous administration of glucose at a rate of 0.3 g/kg of body weight. Dry matter intake was not affected by RPC. Milk yield tended to increase for RPC treatments compared to the control. Feed efficiency was linearly increased by RPC supplementation. Concentrations of fat, true protein, and lactose in milk were not affected by RPC. Apparent total-tract digestibility of dry matter, organic matter, and crude protein was linearly increased, and fecal nitrogen excretion was linearly decreased by RPC supplementation. Rumen-protected Capsicum oleoresin did not affect the composition of fecal bacteria. Glucose concentration in serum was not affected by RPC supplementation post glucose challenge. However, compared to the control, RPC decreased serum insulin concentration at 5, 10, and 40 min post glucose challenge. The area under the insulin concentration curve was also decreased 25% by RPC. Concentration of nonesterified fatty acids and β-hydroxybutyrate in serum were not affected by RPC following glucose administration. In this study, RPC tended to increase milk production and increased feed efficiency in dairy cows. In addition, RPC decreased serum insulin concentration during the glucose tolerance test, but glucose concentration was not affected by treatment.

Collaboration


Dive into the M.T. Harper's collaboration.

Top Co-Authors

Avatar

A.N. Hristov

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

J. Oh

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

F. Giallongo

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

J.C. Lopes

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Gregory W. Roth

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

H. Weeks

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

A. Melgar

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

A.M. Ortega-Perez

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge