J. Calbó
University of Girona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Calbó.
Journal of Atmospheric and Oceanic Technology | 2006
Charles N. Long; J. M. Sabburg; J. Calbó; David Pages
A discussion is presented of daytime sky imaging and techniques that may be applied to the analysis of full-color sky images to infer cloud macrophysical properties. Descriptions of two different types of skyimaging systems developed by the authors are presented, one of which has been developed into a commercially available instrument. Retrievals of fractional sky cover from automated processing methods are compared to human retrievals, both from direct observations and visual analyses of sky images. Although some uncertainty exists in fractional sky cover retrievals from sky images, this uncertainty is no greater than that attached to human observations for the commercially available sky-imager retrievals. Thus, the application of automatic digital image processing techniques on sky images is a useful method to complement, or even replace, traditional human observations of sky cover and, potentially, cloud type. Additionally, the possibilities for inferring other cloud parameters such as cloud brokenness and solar obstruction further enhance the usefulness of sky imagers.
Reviews of Geophysics | 2005
J. Calbó; David Pagès; Josep-Abel González
The interest in solar ultraviolet (UV) radiation from the scientific community and the general population has risen significantly in recent years because of the link between increased UV levels at the Earths surface and depletion of ozone in the stratosphere. As a consequence of recent research, UV radiation climatologies have been developed, and effects of some atmospheric constituents (such as ozone or aerosols) have been studied broadly. Correspondingly, there are well-established relationships between, for example, total ozone column and UV radiation levels at the Earths surface. Effects of clouds, however, are not so well described, given the intrinsic difficulties in properly describing cloud characteristics. Nevertheless, the effect of clouds cannot be neglected, and the variability that clouds induce on UV radiation is particularly significant when short timescales are involved. In this review we show, summarize, and compare several works that deal with the effect of clouds on UV radiation. Specifically, works reviewed here approach the issue from the empirical point of view: Some relationship between measured UV radiation in cloudy conditions and cloud-related information is given in each work. Basically, there are two groups of methods: techniques that are based on observations of cloudiness (either from human observers or by using devices such as sky cameras) and techniques that use measurements of broadband solar radiation as a surrogate for cloud observations. Some techniques combine both types of information. Comparison of results from different works is addressed through using the cloud modification factor (CMF) defined as the ratio between measured UV radiation in a cloudy sky and calculated radiation for a cloudless sky. Typical CMF values for overcast skies range from 0.3 to 0.7, depending both on cloud type and characteristics. Despite this large dispersion of values corresponding to the same cloud cover, it is clear that the cloud effect on UV radiation is 15–45% lower than the cloud effect on total solar radiation. The cloud effect is usually a reducing effect, but a significant number of works report an enhancement effect (that is increased UV radiation levels at the surface) due to the presence of clouds. The review concludes with some recommendations for future studies aimed to further analyze the cloud effects on UV radiation
Journal of Climate | 2008
Arturo Sanchez-Lorenzo; J. Calbó; Javier Martin-Vide
This work analyzes sunshine duration variability in the western part of Europe (WEU) over the 1938– 2004 period. A principal component analysis is applied to cluster the original series from 79 sites into 6 regions, and then annual and seasonal mean series are constructed on regional and also for the whole WEU scales. Over the entire period studied here, the linear trend of annual sunshine duration is found to be nonsignificant. However, annual sunshine duration shows an overall decrease since the 1950s until the early 1980s, followed by a subsequent recovery during the last two decades. This behavior is in good agreement with the dimming and brightening phenomena described in previous literature. From the seasonal analysis, the most remarkable result is the similarity between spring and annual series, although the spring series has a negative trend; and the clear significant increase found for the whole WEU winter series, being especially large since the 1970s. The behavior of the major synoptic patterns for two seasons is investigated, resulting in some indications that sunshine duration evolution may be partially explained by changes in the frequency of some of them.
Journal of Applied Meteorology | 1999
Rosa Salvador; J. Calbó; Millán Millán
The use of two-dimensional spectral analysis applied to terrain heights in order to determine characteristic terrain spatial scales and its subsequent use for the objective definition of an adequate grid size required to resolve terrain forcing are presented in this paper. In order to illustrate the influence of grid size, atmospheric flow in a complex terrain area of the Spanish east coast is simulated by the Regional Atmospheric Modeling System (RAMS) mesoscale numerical model using different horizontal grid resolutions. In this area, a grid size of 2 km is required to account for 95% of terrain variance. Comparison among results of the different simulations shows that, although the main wind behavior does not change dramatically, some small-scale features appear when using a resolution of 2 km or finer. Horizontal flow pattern differences are significant both in the nighttime, when terrain forcing is more relevant, and in the daytime, when thermal forcing is dominant. Vertical structures also are investigated, and results show that vertical advection is influenced highly by the horizontal grid size during the daytime period. The turbulent kinetic energy and potential temperature vertical cross sections show substantial differences in the structure of the planetary boundary layer for each model configuration.
Journal of Geophysical Research | 2014
Alejandro Sánchez-Romero; Arturo Sanchez-Lorenzo; J. Calbó; Josep-Abel González; Cesar Azorin-Molina
Aerosols play a significant yet complex and central role in the Earths radiation budget, and knowledge of long-term changes in the atmospheric turbidity induced by aerosols is therefore fundamental for a better understanding of climate change. However, there is little available information on changes in aerosol concentration in the atmosphere, especially prior to the 1980s. The present paper reviews publications reporting the suitability of sunshine duration records with regard to detecting changes in atmospheric aerosols. Some of the studies reviewed propose methods for estimating aerosol-related magnitudes, such as turbidity, from sunshine deficit at approximately sunrise and sunset, when the impact of aerosols on the solar beam is more easily observed. In addition, there is abundant evidence that one cause of the decadal changes observed in sunshine duration records involves variations in atmospheric aerosol loading. Possible directions for future research are also suggested: in particular, detailed studies of the burn (not only its length but also its width) registered by means of Campbell-Stokes sunshine recorders may provide a way of creating time series of atmospheric aerosol loading metrics dating back to over 120 years from the present.
Journal of Geophysical Research | 2015
Arturo Sanchez-Lorenzo; Martin Wild; Michele Brunetti; José A. Guijarro; M. Z. Hakuba; J. Calbó; S. Mystakidis; B. Bartok
This paper presents trends in downward surface shortwave radiation (SSR) over Europe, which are based on the 56 longest series available from the Global Energy Balance Archive that are mainly concentrated in central Europe. Special emphasis has been placed on both ensuring the temporal homogeneity and including the most recent years in the data set. We have generated, for the first time, composite time series for Europe covering the period 1939–2012, which have been studied by means of running trend analysis. The mean annual SSR series shows an increase from the late 1930s to the early 1950s (i.e., early brightening), followed by a reduction until mid-1980s (i.e., global dimming) and a subsequent increase up to the early 2000s (i.e., global brightening). The series ends with a tendency of stabilization since the early 21st century, but the short time period is insufficient with regard to establishing whether a change in the trend is actually emerging over Europe. Seasonal and regional series are also presented, which highlight that similar variations are obtained for most of the seasons and regions across Europe. In fact, due to the strong spatial correlation in the SSR series, few series are enough to capture almost the same interannual and decadal variability as using a dense network of stations. Decadal variations of the SSR are expected to have an impact on the modulation of the temperatures and other processes over Europe linked with changes in the hydrological cycle, agriculture production, or natural ecosystems. For a better dissemination of the time series developed in this study, the data set is freely available for scientific purposes.
Journal of Geophysical Research | 2014
D. Mateos; Arturo Sanchez-Lorenzo; M. Antón; Victoria E. Cachorro; J. Calbó; Maria João Costa; B. Torres; Martin Wild
The contribution of clouds and aerosols to the decadal variations of downward surface shortwave radiation (SSR) is a current controversial topic. This study proposes a method, which is based on surface-based SSR measurements, aerosol observations, and radiative transfer simulations (in cloud-free and cloud- and aerosol-free scenarios), to evaluate cloud-aerosol (CARE), cloud (CRE), and aerosol (ARE) radiative effects. This method is applied to quantify the role played by, separately, clouds and aerosols on the intense brightening of the SSR observed in the Iberian Peninsula. Clouds and Earths Radiation Energy Budget System (CERES) and surface-based data exhibit an increase in SSR between 2003 and 2012, exceeding +10 W m−2 over this period for some areas of the peninsula. The calculations are performed for three surface-based sites: Barcelona and Valladolid (Spain), and Evora (Portugal). Ranges in monthly values of CARE, CRE, and ARE are (−80, −20), (−60, −20), and (−30, 0), respectively (in W m−2). The average trends for the analyzed period of CARE, CRE, and ARE are +7, +5, and +2 W m−2 per decade, respectively. Overall, three fourths of the SSR trend is explained by clouds, while the other one fourth is related to aerosol changes. The SSR trends explained by the clouds and aerosol radiative effects are in line with the observed reductions in total cloud cover and aerosol load (both at the surface and in the whole atmospheric column). Furthermore, the CRE values are compared against CERES data showing good agreement between both data series, although some discrepancies are observed in their trends.
Solar Energy | 1999
Josep-Abel González; J. Calbó
Abstract We have analyzed the influence of global radiation temporal variability on diffuse fraction correlations. The variability of a zenith angle independent clearness index within an hour is defined by means of three parameters, from a 5-minute basis data set, and assigned to the corresponding hour. Although description of sky condition is usually based only on the clearness index kt leading to Liu-Jordan type correlations, various authors use kt along with solar altitude, which is considered as the second most important variable in the diffuse fraction predictions. The use of a variability parameter also improves the correlations. More specifically, our analysis reveals that the variability parameters play a role as important as the solar altitude. The influence of the variability parameters is more effective under clear sky conditions and high kt values. The linear correlations obtained by using the clearness index, the solar altitude and a variability parameter reduce the RMSE of the diffuse fraction estimation by about 15%, relative to the kt-only correlation. The analysis used two series of data recorded in Catalonia (NE of Iberian Peninsula), which are 3 years and 1 year long respectively.
Journal of Geophysical Research | 1998
J. Calbó; Wen Wei. Pan; Mort Webster; Ronald G. Prinn; Gregory J. McRae
We have derived a parameterization consisting of a set of analytical expressions that approximate the predictions by the California Institute of Technology - Carnegie-Mellon University (CIT) Urban Airshed Model for the net export to the environment (i.e., effective emissions) of several chemical species, as functions of 14 input parameters. For each species, effective emissions are a function of actual urban emissions of this and other species and of other urban domain properties such as meteorology. Effective emissions may be “aged” emissions of primary pollutants or actual production of secondary pollutants. To develop the parameterization we have applied the probabilistic collocation method, which uses the probability density functions of the inputs to generate a set of orthogonal polynomials. These polynomials are then used as the basis for a polynomial chaos expansion that approximates the actual response of the CIT model to its inputs. We assume that seasonal variations can be represented by sinusoidal functions. The parameterization provides a computationally very efficient simulation of the actual model behavior. We have compared the outputs of the parameterization with the outputs of the CIT model, and we conclude that it gives a quite good approximation for effective emissions, at least in the regions of highest probability of the input parameters. This parameterization is applicable to detailed uncertainty and sensitivity analyses and enables computationally efficient inclusion of urban-scale processes as subgrid scale phenomena in global-scale models.
Journal of Applied Meteorology | 2001
J. Calbó; Josep-Abel González; David Pagès
Abstract Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground, however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorological variables, solar radiation is the most affected by cloud cover. In this note, a method for using global and diffuse solar radiation data to classify sky conditions into several classes is suggested. A classical maximum-likelihood method is applied for clustering data. The method is applied to a series of four years of solar radiation data and human cloud observations at a site in Catalonia, Spain. With these data, the accuracy of the solar radiation method as compared with human observations is 45% when nine classes of sky conditions are to be distinguished, and it grows significantly to almost 60% when samples are classified in only five different classes. Most errors are explained by limitations in the database; therefore, further work is under way with a more suitable database.