Josep-Abel González
University of Girona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Josep-Abel González.
Reviews of Geophysics | 2005
J. Calbó; David Pagès; Josep-Abel González
The interest in solar ultraviolet (UV) radiation from the scientific community and the general population has risen significantly in recent years because of the link between increased UV levels at the Earths surface and depletion of ozone in the stratosphere. As a consequence of recent research, UV radiation climatologies have been developed, and effects of some atmospheric constituents (such as ozone or aerosols) have been studied broadly. Correspondingly, there are well-established relationships between, for example, total ozone column and UV radiation levels at the Earths surface. Effects of clouds, however, are not so well described, given the intrinsic difficulties in properly describing cloud characteristics. Nevertheless, the effect of clouds cannot be neglected, and the variability that clouds induce on UV radiation is particularly significant when short timescales are involved. In this review we show, summarize, and compare several works that deal with the effect of clouds on UV radiation. Specifically, works reviewed here approach the issue from the empirical point of view: Some relationship between measured UV radiation in cloudy conditions and cloud-related information is given in each work. Basically, there are two groups of methods: techniques that are based on observations of cloudiness (either from human observers or by using devices such as sky cameras) and techniques that use measurements of broadband solar radiation as a surrogate for cloud observations. Some techniques combine both types of information. Comparison of results from different works is addressed through using the cloud modification factor (CMF) defined as the ratio between measured UV radiation in a cloudy sky and calculated radiation for a cloudless sky. Typical CMF values for overcast skies range from 0.3 to 0.7, depending both on cloud type and characteristics. Despite this large dispersion of values corresponding to the same cloud cover, it is clear that the cloud effect on UV radiation is 15–45% lower than the cloud effect on total solar radiation. The cloud effect is usually a reducing effect, but a significant number of works report an enhancement effect (that is increased UV radiation levels at the surface) due to the presence of clouds. The review concludes with some recommendations for future studies aimed to further analyze the cloud effects on UV radiation
Journal of Geophysical Research | 2014
Alejandro Sánchez-Romero; Arturo Sanchez-Lorenzo; J. Calbó; Josep-Abel González; Cesar Azorin-Molina
Aerosols play a significant yet complex and central role in the Earths radiation budget, and knowledge of long-term changes in the atmospheric turbidity induced by aerosols is therefore fundamental for a better understanding of climate change. However, there is little available information on changes in aerosol concentration in the atmosphere, especially prior to the 1980s. The present paper reviews publications reporting the suitability of sunshine duration records with regard to detecting changes in atmospheric aerosols. Some of the studies reviewed propose methods for estimating aerosol-related magnitudes, such as turbidity, from sunshine deficit at approximately sunrise and sunset, when the impact of aerosols on the solar beam is more easily observed. In addition, there is abundant evidence that one cause of the decadal changes observed in sunshine duration records involves variations in atmospheric aerosol loading. Possible directions for future research are also suggested: in particular, detailed studies of the burn (not only its length but also its width) registered by means of Campbell-Stokes sunshine recorders may provide a way of creating time series of atmospheric aerosol loading metrics dating back to over 120 years from the present.
Solar Energy | 1999
Josep-Abel González; J. Calbó
Abstract We have analyzed the influence of global radiation temporal variability on diffuse fraction correlations. The variability of a zenith angle independent clearness index within an hour is defined by means of three parameters, from a 5-minute basis data set, and assigned to the corresponding hour. Although description of sky condition is usually based only on the clearness index kt leading to Liu-Jordan type correlations, various authors use kt along with solar altitude, which is considered as the second most important variable in the diffuse fraction predictions. The use of a variability parameter also improves the correlations. More specifically, our analysis reveals that the variability parameters play a role as important as the solar altitude. The influence of the variability parameters is more effective under clear sky conditions and high kt values. The linear correlations obtained by using the clearness index, the solar altitude and a variability parameter reduce the RMSE of the diffuse fraction estimation by about 15%, relative to the kt-only correlation. The analysis used two series of data recorded in Catalonia (NE of Iberian Peninsula), which are 3 years and 1 year long respectively.
Journal of Applied Meteorology | 2001
J. Calbó; Josep-Abel González; David Pagès
Abstract Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground, however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorological variables, solar radiation is the most affected by cloud cover. In this note, a method for using global and diffuse solar radiation data to classify sky conditions into several classes is suggested. A classical maximum-likelihood method is applied for clustering data. The method is applied to a series of four years of solar radiation data and human cloud observations at a site in Catalonia, Spain. With these data, the accuracy of the solar radiation method as compared with human observations is 45% when nine classes of sky conditions are to be distinguished, and it grows significantly to almost 60% when samples are classified in only five different classes. Most errors are explained by limitations in the database; therefore, further work is under way with a more suitable database.
Journal of Geophysical Research | 2015
A. Viúdez‐Mora; M. Costa-Surós; J. Calbó; Josep-Abel González
The behavior of the atmospheric downward longwave radiation at the surface under overcast conditions is studied. For optically thick clouds, longwave radiation depends greatly on the cloud base height (CBH), besides temperature and water vapor profiles. The CBH determines the cloud emission temperature and the air layers contributing to the longwave radiation that reaches the surface. Overcast situations observed at Girona (NE Iberian Peninsula) were studied by using a radiative transfer model. The data set includes different seasons, and a large range of CBH (0–5000 m). The atmosphere profiles were taken from the European Center for Medium-Range Weather Forecast analysis. The CBH was determined from ceilometer measurements and also estimated by using a suitable method applied to the vertical profile of relative humidity. The agreement between calculations and pyrgeometer measurements is remarkably good (1.6 ± 6.2 W m−2) if the observed CBH is used; poorer results are obtained with the estimated CBH (4.3 ± 7.0 W m−2). These results are better than those obtained from a simple parameterization based upon ground-level data (1.1 ± 11.6 W m−2), which can be corrected by adding a term that takes into account the CBH (−0.1 ± 7.3 W m−2). At this site, the cloud radiative effect (CRE) at the surface lies in the range 50–80 W m−2, has a clear seasonal behavior (higher CRE in winter), and depends upon the CBH. For the cold and the warm seasons, CRE decreases with CBH at a rate of −5 and −4 W m−2/km, respectively. Results obtained for other climates (subarctic and tropical) are also presented.
Scientific Reports | 2017
Arturo Sanchez-Lorenzo; Aaron Enriquez-Alonso; J. Calbó; Josep-Abel González; Martin Wild; Doris Folini; Joel R. Norris; Sergio M. Vicente-Serrano
Clouds play a major role in the climate system, but large uncertainties remain about their decadal variations. Here we report a widespread decrease in cloud cover since the 1970 s over the Mediterranean region, in particular during the 1970 s–1980 s, especially in the central and eastern areas and during springtime. Confidence in these findings is high due to the good agreement between the interannual variations of cloud cover provided by surface observations and several satellite-derived and reanalysis products, although some discrepancies exist in their trends. Climate model simulations of the historical experiment from the Coupled Model Intercomparison Project Phase 5 (CMIP5) also exhibit a decrease in cloud cover over the Mediterranean since the 1970 s, in agreement with surface observations, although the rate of decrease is slightly lower. The observed northward expansion of the Hadley cell is discussed as a possible cause of detected trends.
Journal of Applied Meteorology | 2005
Jordi Badosa; Josep-Abel González; J. Calbó; Michiel van Weele; Richard McKenzie
To perform a climatic analysis of the annual UV index (UVI) variations in Catalonia, Spain (northeast of the Iberian Peninsula), a new simple parameterization scheme is presented based on a multilayer radiative transfer model. The parameterization performs fast UVI calculations for a wide range of cloudless and snow-free situations and can be applied anywhere. The following parameters are considered: solar zenith angle, total ozone column, altitude, aerosol optical depth, and single-scattering albedo. A sensitivity analysis is presented to justify this choice with special attention to aerosol information. Comparisons with the base model show good agreement, most of all for the most common cases, giving an absolute error within 0.2 in the UVI for a wide range of cases considered. Two tests are done to show the performance of the parameterization against UVI measurements. One uses data from a high-quality spectroradiometer from Lauder, New Zealand [45.04°S, 169.684°E, 370 m above mean sea level (MSL)], where there is a low presence of aerosols. The other uses data from a Robertson–Berger-type meter from Girona, Spain (41.97°N, 2.82°E, 100 m MSL), where there is more aerosol load and where it has been possible to study the effect of aerosol information on the model versus measurement comparison. The parameterization is applied to a climatic analysis of the annual UVI variation in Catalonia, showing the contributions of solar zenith angle, ozone, and aerosols. High-resolution seasonal maps of typical UV index values in Catalonia are presented.
Geophysical Research Letters | 2016
Alejandro Sánchez-Romero; Arturo Sanchez-Lorenzo; Josep-Abel González; J. Calbó
We report the suitability of sunshine duration (SD) records as a proxy for the reconstruction of atmospheric aerosol content, for which little information exists, especially prior to the 1980s. Specifically, we have treated cloudless summer days in 16 stations throughout Spain. For almost all sites we find statistically significant relationships between aerosol optical depth (AOD), and daily SD. The correlation coefficient presents a mean value of −0.72, and slope values of the linear regressions are within the range [−0.11, −0.36]. The relationships are used to generate AOD series back to the 1960s (to the 1920s for Madrid). These reconstructed series show an increase in AOD from the mid-1960s to the 1980s, followed by a decrease until the present, in agreement with changes in anthropogenic aerosol emissions and with opposite trends of solar irradiance. The method can be used to reconstruct AOD from the late 19th century at many stations worldwideWe report the suitability of sunshine duration (SD) records as a proxy for the reconstruction of atmospheric aerosol content, for which little information exists, especially prior to the 1980s. Specifically, we have treated cloudless summer days in 16 stations throughout Spain. For almost all sites we find statistically significant relationships between aerosol optical depth (AOD) and daily SD. The correlation coefficient presents a mean value of −0.72, and slope values of the linear regressions are within the range [−0.11, −0.36]. The relationships are used to generate AOD series back to the 1960s (to the 1920s for Madrid). These reconstructed series show an increase in AOD from the mid-1960s to the 1980s, followed by a decrease until the present, in agreement with changes in anthropogenic aerosol emissions and with opposite trends of solar irradiance. The method can be used to reconstruct AOD from the late nineteenth century at many stations worldwide.
Journal of Applied Meteorology and Climatology | 2011
Salvador Matamoros; Josep-Abel González; J. Calbó
Abstract A deeper knowledge of the effects and interactions of clouds in the climatic system requires developing both satellite and ground-based methods to assess their optical properties. A simple method based on a parameterized inversion of a radiative transfer model is proposed to estimate the optical depth of thick liquid water clouds from the atmospheric transmittance at 415 nm, solar zenith angle, surface albedo, effective droplet radius, and aerosol load. When concurrent measurements of atmospheric transmittance and liquid water path are available, the effective radius of the droplet size distribution can also be retrieved. The method is compared with a reference algorithm from Min and Harrison, which uses similar data, except aerosol load. When applied to measurements performed at the Southern Great Plains site of the Atmospheric Radiation Measurement Program, the mean bias deviation between the proposed method and the reference method is only −0.08 in units of optical depth, whereas the standard ...
Photochemistry and Photobiology | 2014
Jordi Badosa; J. Calbó; Richard McKenzie; Ben Liley; Josep-Abel González; Bruce Forgan; Charles N. Long
Cloud effects on UV Index (UVI) and total solar radiation (TR) as a function of cloud cover and sunny conditions (from sky images) as well as of solar zenith angle (SZA) are assessed. These analyses are undertaken for a southern‐hemisphere mid‐latitude site where a 10‐years dataset is available. It is confirmed that clouds reduce TR more than UV, in particular for obscured Sun conditions, low cloud fraction (<60%) and large SZA (>60°). Similarly, local short‐time enhancement effects are stronger for TR than for UV, mainly for visible Sun conditions, large cloud fraction and large SZA. Two methods to estimate UVI are developed: (1) from sky imaging cloud cover and sunny conditions, and (2) from TR measurements. Both methods may be used in practical applications, although Method 2 shows overall the best performance, as TR allows considering cloud optical properties. The mean absolute (relative) differences of Method 2 estimations with respect to measured values are 0.17 UVI units (6.7%, for 1 min data) and 0.79 Standard Erythemal Dose (SED) units (3.9%, for daily integrations). Method 1 shows less accurate results but it is still suitable to estimate UVI: mean absolute differences are 0.37 UVI units (15%) and 1.6 SED (8.0%).