Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Christopher Luft is active.

Publication


Featured researches published by J. Christopher Luft.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The effect of particle design on cellular internalization pathways

Stephanie E. A. Gratton; Patricia A. Ropp; Patrick D. Pohlhaus; J. Christopher Luft; Victoria J. Madden; Mary E. Napier; Joseph M. DeSimone

The interaction of particles with cells is known to be strongly influenced by particle size, but little is known about the interdependent role that size, shape, and surface chemistry have on cellular internalization and intracellular trafficking. We report on the internalization of specially designed, monodisperse hydrogel particles into HeLa cells as a function of size, shape, and surface charge. We employ a top-down particle fabrication technique called PRINT that is able to generate uniform populations of organic micro- and nanoparticles with complete control of size, shape, and surface chemistry. Evidence of particle internalization was obtained by using conventional biological techniques and transmission electron microscopy. These findings suggest that HeLa cells readily internalize nonspherical particles with dimensions as large as 3 μm by using several different mechanisms of endocytosis. Moreover, it was found that rod-like particles enjoy an appreciable advantage when it comes to internalization rates, reminiscent of the advantage that many rod-like bacteria have for internalization in nonphagocytic cells.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles

Timothy J. Merkel; Stephen W. Jones; Kevin P. Herlihy; Farrell R. Kersey; Adam R. Shields; Mary E. Napier; J. Christopher Luft; Huali Wu; William C. Zamboni; Andrew Z. Wang; James E. Bear; Joseph M. DeSimone

It has long been hypothesized that elastic modulus governs the biodistribution and circulation times of particles and cells in blood; however, this notion has never been rigorously tested. We synthesized hydrogel microparticles with tunable elasticity in the physiological range, which resemble red blood cells in size and shape, and tested their behavior in vivo. Decreasing the modulus of these particles altered their biodistribution properties, allowing them to bypass several organs, such as the lung, that entrapped their more rigid counterparts, resulting in increasingly longer circulation times well past those of conventional microparticles. An 8-fold decrease in hydrogel modulus correlated to a greater than 30-fold increase in the elimination phase half-life for these particles. These results demonstrate a critical design parameter for hydrogel microparticles.


Nano Letters | 2012

Delivery of Multiple siRNAs Using Lipid-coated PLGA Nanoparticles for Treatment of Prostate Cancer

Warefta Hasan; Kevin S. Chu; Anuradha Gullapalli; Stuart S. Dunn; Elizabeth M. Enlow; J. Christopher Luft; Shaomin Tian; Mary E. Napier; Patrick D. Pohlhaus; Jason P. Rolland; Joseph M. DeSimone

Nanotechnology can provide a critical advantage in developing strategies for cancer management and treatment by helping to improve the safety and efficacy of novel therapeutic delivery vehicles. This paper reports the fabrication of poly(lactic acid-co-glycolic acid)/siRNA nanoparticles coated with lipids for use as prostate cancer therapeutics made via a unique soft lithography particle molding process called Particle Replication In Nonwetting Templates (PRINT). The PRINT process enables high encapsulation efficiency of siRNA into neutral and monodisperse PLGA particles (32-46% encapsulation efficiency). Lipid-coated PLGA/siRNA PRINT particles were used to deliver therapeutic siRNA in vitro to knockdown genes relevant to prostate cancer.


Nano Letters | 2011

Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings.

Elizabeth M. Enlow; J. Christopher Luft; Mary E. Napier; Joseph M. DeSimone

Herein we report the fabrication of engineered poly(lactic acid-co-glycolic acid) nanoparticles via the PRINT (particle replication in nonwetting templates) process with high and efficient loadings of docetaxel, up to 40% (w/w) with encapsulation efficiencies >90%. The PRINT process enables independent control of particle properties leading to a higher degree of tailorability than traditional methods. Particles with 40% loading display better in vitro efficacy than particles with lower loadings and the clinical formulation of docetaxel, Taxotere.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft

Kevin S. Chu; Warefta Hasan; Sumit Rawal; Mark D. Walsh; Elizabeth M. Enlow; J. Christopher Luft; Arlene S. Bridges; Jennifer L. Kuijer; Mary E. Napier; William C. Zamboni; Joseph M. DeSimone

UNLABELLED The particle fabrication technique PRINT® was used to fabricate monodisperse size and shape specific poly(lactide-co-glycolide) particles loaded with the chemotherapeutic Docetaxel. The pharmacokinetics of two cylindrical shaped particles with diameter=80nm; height=320nm (PRINT-Doc-80×320) and d=200nm; h=200nm (PRINT-Doc-200×200) were compared to Docetaxel in mice bearing human ovarian carcinoma SKOV-3 flank xenografts. The Docetaxel plasma exposure was ~20-fold higher for both particles compared to docetaxel. Additionally, the volume of distribution (Vd) of Docetaxel in PRINT formulations was ~18-fold (PRINT-Doc-80×320) and ~33-fold (PRINT-Doc-200×200) lower than Docetaxel. The prolonged duration of Docetaxel in plasma when dosed with PRINT formulations subsequently led to increased tumor exposure of Docetaxel from 0 to 168h (~53% higher for PRINT-Doc-80×320 and ~76% higher for PRINT-Doc-200×200 particles). PRINT-Doc-80×320 had lower exposures in the liver, spleen and lung compared with PRINT-Doc-200×200. Thus, the use of particles with smaller feature size may be preferred to decrease clearance by organs of the mononuclear phagocyte system. FROM THE CLINICAL EDITOR In this study, the plasma, tumor, and tissue pharmacokinetics of different Docetaxel nanoparticles of precise shape and size were characterized in mice with human ovarian carcinoma xenograft. It is concluded that the use of particles with smaller feature size may be preferred to decrease clearance by organs of the mononuclear phagocyte system.


Langmuir | 2011

Amphiphilic co-networks with moisture-induced surface segregation for high-performance nonfouling coatings.

Yapei Wang; John A. Finlay; Douglas E. Betts; Timothy J. Merkel; J. Christopher Luft; Maureen E. Callow; Joseph M. DeSimone

Herein we report the design of a photocurable amphiphilic co-network consisting of perfluoropolyether and poly(ethylene glycol) segments that display outstanding nonfouling characteristics with respect to spores of green fouling alga Ulva when cured under high humidity conditions. The analysis of contact angle hysteresis revealed that the poly(ethylene glycol) density at the surface was enhanced when cured under high humidity. The nonfouling behavior of nonbiocidal surfaces against marine fouling is rare because such surfaces usually reduce the adhesion of organisms rather than inhibit colonization. We propose that the resultant surface segregation of these materials induced by high humidity may be a promising strategy for achieving nonfouling materials, and such an approach is more important than simply concentrating poly(ethylene glycol) moieties at an interface because the low surface energy has been maintained in our work.


Biomacromolecules | 2012

Low modulus biomimetic microgel particles with high loading of hemoglobin.

Kai Chen; Timothy J. Merkel; Ashish A. Pandya; Mary E. Napier; J. Christopher Luft; Will Daniel; Sergei S. Sheiko; Joseph M. DeSimone

We synthesized extremely deformable red blood cell-like microgel particles and loaded them with bovine hemoglobin (Hb) to potentiate oxygen transport. With similar shape and size as red blood cells (RBCs), the particles were fabricated using the PRINT (particle replication in nonwetting templates) technique. Low cross-linking of the hydrogel resulted in very low mesh density for these particles, allowing passive diffusion of hemoglobin throughout the particles. Hb was secured in the particles through covalent conjugation of the lysine groups of Hb to carboxyl groups in the particles via EDC/NHS coupling. Confocal microscopy of particles bound to fluorescent dye-labeled Hb confirmed the uniform distribution of Hb throughout the particle interior, as opposed to the surface conjugation only. High loading ratios, up to 5 times the amount of Hb to polymer by weight, were obtained without a significant effect on particle stability and shape, though particle diameter decreased slightly with Hb conjugation. Analysis of the protein by circular dichroism (CD) spectroscopy showed that the secondary structure of Hb was unperturbed by conjugation to the particles. Methemoglobin in the particles could be maintained at a low level and the loaded Hb could still bind oxygen, as studied by UV-vis spectroscopy. Hb-loaded particles with moderate loading ratios demonstrated excellent deformability in microfluidic devices, easily deforming to pass through restricted pores half as wide as the diameter of the particles. The suspension of concentrated particles with a Hb concentration of 5.2 g/dL showed comparable viscosity to that of mouse blood, and the particles remained intact even after being sheared at a constant high rate (1000 1/s) for 10 min. Armed with the ability to control size, shape, deformability, and loading of Hb into RBC mimics, we will discuss the implications for artificial blood.


Nano Letters | 2015

Targeted PRINT Hydrogels: The Role of Nanoparticle Size and Ligand Density on Cell Association, Biodistribution, and Tumor Accumulation

Kevin G. Reuter; Jillian L. Perry; Dongwook Kim; J. Christopher Luft; Rihe Liu; Joseph M. DeSimone

In this Letter, we varied targeting ligand density of an EGFR binding affibody on the surface of two different hydrogel PRINT nanoparticles (80 nm × 320 and 55 nm × 60 nm) and monitored effects on target-cell association, off-target phagocytic uptake, biodistribution, and tumor accumulation. Interestingly, variations in ligand density only significantly altered in vitro internalization rates for the 80 nm × 320 nm particle. However, in vivo, both particle sizes experienced significant changes in biodistribution and pharmacokinetics as a function of ligand density. Overall, nanoparticle size and passive accumulation were the dominant factors eliciting tumor sequestration.


Journal of the American Chemical Society | 2012

Rendering Protein-Based Particles Transiently Insoluble for Therapeutic Applications

Jing Xu; Jin Wang; J. Christopher Luft; Shaomin Tian; Gary Owens; Ashish A. Pandya; Peter Berglund; Patrick D. Pohlhaus; Benjamin W. Maynor; Jonathan M. Smith; Bolyn Hubby; Mary E. Napier; Joseph M. DeSimone

Herein, we report the fabrication of protein (bovine serum albumin, BSA) particles which were rendered transiently insoluble using a novel, reductively labile disulfide-based cross-linker. After being cross-linked, the protein particles retain their integrity in aqueous solution and dissolve preferentially under a reducing environment. Our data demonstrates that cleavage of the cross-linker leaves no chemical residue on the reactive amino group. Delivery of a self-replicating RNA was achieved via the transiently insoluble PRINT protein particles. These protein particles can provide new opportunities for drug and gene delivery.


Journal of Controlled Release | 2015

Nanoparticulate immunotherapy for cancer.

Chintan H. Kapadia; Jillian L. Perry; Shaomin Tian; J. Christopher Luft; Joseph M. DeSimone

Although surgery, radiation therapy, and chemotherapy have significantly improved as treatments for cancer, they can rarely control metastatic disease and cures remain scarce. Promising recent developments suggest that cancer immunotherapy may become a powerful new therapy that clinicians can offer cancer patients. The opportunity to orchestrate the bodys own immune system to target, fight, and eradicate cancer cells without destroying healthy cells makes this an extremely attractive treatment modality. Our increased knowledge in anti-tumor immunity and the immunosuppressive tumor microenvironment (TME) has provided many therapeutic strategies to battle cancer. That combined with advancements in the field of particulate delivery systems provide a mechanism to deliver these immunotherapeutics to their specific targeted cells and the TME. In this review we will focus on the current status of immunotherapy and the potential advantages of utilizing nanocarriers within the field.

Collaboration


Dive into the J. Christopher Luft's collaboration.

Top Co-Authors

Avatar

Joseph M. DeSimone

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jillian L. Perry

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Mary E. Napier

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Shaomin Tian

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

William C. Zamboni

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Charles J. Bowerman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kevin S. Chu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Marc P. Kai

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Catherine A. Fromen

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Jing Xu

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge