Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaomin Tian is active.

Publication


Featured researches published by Shaomin Tian.


Journal of the American Chemical Society | 2012

Reductively responsive siRNA-conjugated hydrogel nanoparticles for gene silencing.

Stuart S. Dunn; Shaomin Tian; Steven Blake; Jin Wang; Ashley L. Galloway; Andrew Murphy; Patrick D. Pohlhaus; Jason P. Rolland; Mary E. Napier; Joseph M. DeSimone

A critical need still remains for effective delivery of RNA interference (RNAi) therapeutics to target tissues and cells. Self-assembled lipid- and polymer-based systems have been most extensively explored for transfection with small interfering RNA (siRNA) in liver and cancer therapies. Safety and compatibility of materials implemented in delivery systems must be ensured to maximize therapeutic indices. Hydrogel nanoparticles of defined dimensions and compositions, prepared via a particle molding process that is a unique off-shoot of soft lithography known as particle replication in nonwetting templates (PRINT), were explored in these studies as delivery vectors. Initially, siRNA was encapsulated in particles through electrostatic association and physical entrapment. Dose-dependent gene silencing was elicited by PEGylated hydrogels at low siRNA doses without cytotoxicity. To prevent disassociation of cargo from particles after systemic administration or during postfabrication processing for surface functionalization, a polymerizable siRNA pro-drug conjugate with a degradable, disulfide linkage was prepared. Triggered release of siRNA from the pro-drug hydrogels was observed under a reducing environment while cargo retention and integrity were maintained under physiological conditions. Gene silencing efficiency and cytocompatibility were optimized by screening the amine content of the particles. When appropriate control siRNA cargos were loaded into hydrogels, gene knockdown was only encountered for hydrogels containing releasable, target-specific siRNAs, accompanied by minimal cell death. Further investigation into shape, size, and surface decoration of siRNA-conjugated hydrogels should enable efficacious targeted in vivo RNAi therapies.


Nano Letters | 2012

Delivery of Multiple siRNAs Using Lipid-coated PLGA Nanoparticles for Treatment of Prostate Cancer

Warefta Hasan; Kevin S. Chu; Anuradha Gullapalli; Stuart S. Dunn; Elizabeth M. Enlow; J. Christopher Luft; Shaomin Tian; Mary E. Napier; Patrick D. Pohlhaus; Jason P. Rolland; Joseph M. DeSimone

Nanotechnology can provide a critical advantage in developing strategies for cancer management and treatment by helping to improve the safety and efficacy of novel therapeutic delivery vehicles. This paper reports the fabrication of poly(lactic acid-co-glycolic acid)/siRNA nanoparticles coated with lipids for use as prostate cancer therapeutics made via a unique soft lithography particle molding process called Particle Replication In Nonwetting Templates (PRINT). The PRINT process enables high encapsulation efficiency of siRNA into neutral and monodisperse PLGA particles (32-46% encapsulation efficiency). Lipid-coated PLGA/siRNA PRINT particles were used to deliver therapeutic siRNA in vitro to knockdown genes relevant to prostate cancer.


Journal of Controlled Release | 2012

The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles.

Timothy J. Merkel; Kai Chen; Stephen W. Jones; Ashish A. Pandya; Shaomin Tian; Mary E. Napier; William E. Zamboni; Joseph M. DeSimone

There is a growing recognition that the deformability of particles used for drug delivery plays a significant role on their biodistribution and circulation profile. Understanding these effects would provide a crucial tool for the rational design of drug delivery systems. While particles resembling red blood cells (RBCs) in size, shape and deformability have extended circulation times and altered biodistribution profiles compared to rigid, but otherwise similar particles, the in vivo behavior of such highly deformable particles of varied size has not been explored. We report the fabrication of a series of discoid, monodisperse, low-modulus hydrogel particles with diameters ranging from 0.8 to 8.9 μm, spanning sizes smaller than and larger than RBCs. We injected these particles into healthy mice, and tracked their concentration in the blood and their distribution into major organs. These deformable particles all demonstrated some hold up in filtration tissues like the lungs and spleen, followed by release back into the circulation, characterized by decreases in particles in these tissues with concomitant increases in particle concentration in blood. Particles similar to red blood cells in size demonstrated longer circulation times, suggesting that this size and shape of deformable particle is uniquely suited to avoid clearance.


Nature Nanotechnology | 2017

Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy

Yuanzeng Min; Kyle C. Roche; Shaomin Tian; Michael J. Eblan; Karen P. McKinnon; Joseph M. Caster; Shengjie Chai; Laura E. Herring; Longzhen Zhang; Tian Zhang; Joseph M. DeSimone; Joel E. Tepper; Benjamin G. Vincent; Jonathan S. Serody; Andrew Z. Wang

Immunotherapy holds tremendous promise for improving cancer treatment1. Administering radiotherapy with immunotherapy has been shown to improve immune responses and can elicit an “abscopal effect”2. Unfortunately, response rates for this strategy remain low3. Herein, we report an improved cancer immunotherapy approach that utilizes antigen-capturing nanoparticles (AC-NPs). We engineered several AC-NPs formulations and demonstrated that the set of protein antigens captured by each AC-NP formulation is dependent upon NP surface properties. We showed that AC-NPs deliver tumor specific proteins to antigen-presenting cells and significantly improve the efficacy of αPD-1 treatment using the B16F10 melanoma model, generating up to 20% cure rate as compared to 0% without AC-NPs. Mechanistic studies revealed that AC-NPs induced an expansion of CD8+ cytotoxic T cells and increased both CD4+/Treg and CD8+/Treg ratios. Our work presents a novel strategy for improving cancer immunotherapy with nanotechnology.


Molecular Pharmaceutics | 2015

Rapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunity

Sarah N. Mueller; Shaomin Tian; Joseph M. DeSimone

Nanoparticle delivery of subunit vaccines may increase vaccine efficacy, leading to a wide variety of safe and effective vaccines beyond those available through dosing inactivated or live, attenuated whole pathogens. Here we present a versatile vaccine delivery platform based on PRINT hydrogels made of biocompatible hydroxy-poly(ethylene glycol) (PEG) that is able to activate the complement system by the alternative pathway. These lymph node targeting nanoparticles (NPs) promote the immunogenicity of a model antigen, ovalbumin, showing comparable adjuvant effect to alum. We demonstrate that an antigen-specific humoral response is correlated with antigen delivery to the draining lymph nodes, in particular, B cell rich regions of the lymph nodes. 80 × 180 nm cylindrical NPs were able to sustain prolonged antigen presentation to antigen presenting cells (APCs) and elicit a stronger immune response than nondraining 1 × 1 μm NPs or rapidly clearing soluble antigen. The 80 × 180 nm NPs also show high levels of uptake by key APCs and efficiently stimulate CD4(+) helper T cell proliferation in vivo, further promoting antibody production. These features together produce a significant humoral immune response, superior to that produced by free antigen alone. The simplicity of the chemistries used in antigen conjugation to PRINT NPs confers versatility to this antigen delivery platform, allowing for potential application to many infectious diseases.


Journal of the American Chemical Society | 2012

Rendering Protein-Based Particles Transiently Insoluble for Therapeutic Applications

Jing Xu; Jin Wang; J. Christopher Luft; Shaomin Tian; Gary Owens; Ashish A. Pandya; Peter Berglund; Patrick D. Pohlhaus; Benjamin W. Maynor; Jonathan M. Smith; Bolyn Hubby; Mary E. Napier; Joseph M. DeSimone

Herein, we report the fabrication of protein (bovine serum albumin, BSA) particles which were rendered transiently insoluble using a novel, reductively labile disulfide-based cross-linker. After being cross-linked, the protein particles retain their integrity in aqueous solution and dissolve preferentially under a reducing environment. Our data demonstrates that cleavage of the cross-linker leaves no chemical residue on the reactive amino group. Delivery of a self-replicating RNA was achieved via the transiently insoluble PRINT protein particles. These protein particles can provide new opportunities for drug and gene delivery.


Journal of Controlled Release | 2015

Nanoparticulate immunotherapy for cancer.

Chintan H. Kapadia; Jillian L. Perry; Shaomin Tian; J. Christopher Luft; Joseph M. DeSimone

Although surgery, radiation therapy, and chemotherapy have significantly improved as treatments for cancer, they can rarely control metastatic disease and cures remain scarce. Promising recent developments suggest that cancer immunotherapy may become a powerful new therapy that clinicians can offer cancer patients. The opportunity to orchestrate the bodys own immune system to target, fight, and eradicate cancer cells without destroying healthy cells makes this an extremely attractive treatment modality. Our increased knowledge in anti-tumor immunity and the immunosuppressive tumor microenvironment (TME) has provided many therapeutic strategies to battle cancer. That combined with advancements in the field of particulate delivery systems provide a mechanism to deliver these immunotherapeutics to their specific targeted cells and the TME. In this review we will focus on the current status of immunotherapy and the potential advantages of utilizing nanocarriers within the field.


Journal of the American Chemical Society | 2014

Design of Asymmetric Particles Containing a Charged Interior and a Neutral Surface Charge: Comparative Study on in Vivo Circulation of Polyelectrolyte Microgels

Kai Chen; Jing Xu; J. Christopher Luft; Shaomin Tian; Jay S. Raval; Joseph M. DeSimone

Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.


Molecular Pharmaceutics | 2013

RNA replicon delivery via lipid-complexed PRINT protein particles.

Jing Xu; J. Christopher Luft; Xianwen Yi; Shaomin Tian; Gary K. Owens; Jin Wang; Ashley R. Johnson; Peter Berglund; Jonathan M. Smith; Mary E. Napier; Joseph M. DeSimone

Herein we report the development of a nonviral lipid-complexed PRINT (particle replication in nonwetting templates) protein particle system (LPP particle) for RNA replicon delivery with a view toward RNA replicon-based vaccination. Cylindrical bovine serum albumin (BSA) particles (diameter (d) 1 μm, height (h) 1 μm) loaded with RNA replicon and stabilized with a fully reversible disulfide cross-linker were fabricated using PRINT technology. Highly efficient delivery of the particles to Vero cells was achieved by complexing particles with a mixture of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids. Our data suggest that (1) this lipid-complexed protein particle is a promising system for delivery of RNA replicon-based vaccines and (2) it is necessary to use a degradable cross-linker for successful delivery of RNA replicon via protein-based particles.


PLOS Neglected Tropical Diseases | 2016

Precisely Molded Nanoparticle Displaying DENV-E Proteins Induces Robust Serotype-Specific Neutralizing Antibody Responses

Stefan W. Metz; Shaomin Tian; Gabriel Hoekstra; Xianwen Yi; Michelle Stone; Katie Horvath; Michael J. Miley; Joseph M. DeSimone; Chris Luft; Aravinda M. de Silva

Dengue virus (DENV) is the causative agent of dengue fever and dengue hemorrhagic fever. The virus is endemic in over 120 countries, causing over 350 million infections per year. Dengue vaccine development is challenging because of the need to induce simultaneous protection against four antigenically distinct DENV serotypes and evidence that, under some conditions, vaccination can enhance disease due to specific immunity to the virus. While several live-attenuated tetravalent dengue virus vaccines display partial efficacy, it has been challenging to induce balanced protective immunity to all 4 serotypes. Instead of using whole-virus formulations, we are exploring the potentials for a particulate subunit vaccine, based on DENV E-protein displayed on nanoparticles that have been precisely molded using Particle Replication in Non-wetting Template (PRINT) technology. Here we describe immunization studies with a DENV2-nanoparticle vaccine candidate. The ectodomain of DENV2-E protein was expressed as a secreted recombinant protein (sRecE), purified and adsorbed to poly (lactic-co-glycolic acid) (PLGA) nanoparticles of different sizes and shape. We show that PRINT nanoparticle adsorbed sRecE without any adjuvant induces higher IgG titers and a more potent DENV2-specific neutralizing antibody response compared to the soluble sRecE protein alone. Antigen trafficking indicate that PRINT nanoparticle display of sRecE prolongs the bio-availability of the antigen in the draining lymph nodes by creating an antigen depot. Our results demonstrate that PRINT nanoparticles are a promising platform for delivering subunit vaccines against flaviviruses such as dengue and Zika.

Collaboration


Dive into the Shaomin Tian's collaboration.

Top Co-Authors

Avatar

Joseph M. DeSimone

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

J. Christopher Luft

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Mary E. Napier

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jin Wang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jillian L. Perry

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jing Xu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Aravinda M. de Silva

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Chintan H. Kapadia

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Michael J. Miley

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Patrick D. Pohlhaus

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge