J. D. Caldwell
United States Naval Research Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. D. Caldwell.
Applied Physics Letters | 2007
Yoosuf N. Picard; J. D. Caldwell; M. E. Twigg; Charles R. Eddy; Michael A. Mastro; R.L. Henry; R. T. Holm; P. G. Neudeck; Andrew J. Trunek; J. A. Powell
Threading dislocations in metal-organic chemical-vapor grown GaN films were imaged nondestructively by the electron channeling contrast imaging (ECCI) technique. Comparisons between ECCI and cross-sectional transmission electron microscopy indicated that pure edge dislocations can be imaged in GaN by ECCI. Total threading dislocation densities were measured by ECCI for various GaN films on engineered 4H-SiC surfaces and ranged from 107to109cm−2. A comparison between the ultraviolet electroluminescent output measured at 380nm and the total dislocation density as measured by ECCI revealed an inverse logarithmic dependence.
Optics Express | 2012
Blake S. Simpkins; James P. Long; Orest J. Glembocki; Junpeng Guo; J. D. Caldwell; Jeffrey C. Owrutsky
We investigate coupling in arrays of nanoparticles resonating as half-wave antennas on both silicon and sapphire, and find a universal behavior when scaled by antenna length and substrate index. Three distinct coupling regimes are identified and characterized by rigorous finite-difference time domain simulations. As interparticle pitch is reduced below the oft-described radiative to evanescent transition, resonances blue shift and narrow and exhibit an asymmetric band consistent with a Fano lineshape. Upon further pitch reduction, a transition to a third regime, termed here as near-field coupling, is observed in which the resonance shifts red, becomes more symmetric, and broadens dramatically. This latter regime occurs when the extension of the resonant mode beyond the physical antenna end overlaps that of its neighbor. Simulations identify a clear rearrangement of field intensity accompanying this regime, illustrating that longitudinal modal fields localize in the air gap rather than in the higher index substrate at a pitch consistent with the experimentally observed transition.
Nanotechnology | 2007
Michael A. Mastro; J. A. Freitas; Orest J. Glembocki; Charles R. Eddy; R. T. Holm; R.L. Henry; J. D. Caldwell; R. W. Rendell; Fritz J. Kub; Jihyun Kim
The plasmonic response from a nanotextured silver coating was utilized to enhance the transfer of ultraviolet light generated in a group-III nitride nanowire emitter. A two-step approach was developed in a metal–organic chemical vapour deposition system to grow nanowires initially vertically by the vapour–liquid–solid mechanism and, subsequently, laterally by increasing the growth temperature and the group-V/III reactant ratio. This controllably produced a 20 nm GaN:Si core with a 200 nm outer-diameter AlGaN:Mg sheath structure. Solvothermal chemistry based on an ethylene glycol solvent was employed to deposit a silver coating that approximated a dense packing of metallic nanospheres. Nanoscale emission and plasmonically enhanced transfer of this energy were simulated to aid the development and understanding of this system.
Journal of Electronic Materials | 2013
Edward P. Gorzkowski; S. B. Qadri; B. B. Rath; Ramasis Goswami; J. D. Caldwell
We have demonstrated that large quantities of β-SiC nanostructures can be obtained from rice husk agricultural waste by using controlled conditions in a thermogravimetric setup. This simple and inexpensive method of producing these structures on a large scale is critical for applications in nanoelectronics, nanosensors, and biotechnology. The temperature and atmosphere are two critical elements in forming either α-cristobalite (SiO2) or β-SiC. Using different characterization methods (x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy), we have shown that pyrolysis of rice husks in argon atmosphere at 1375°C results in simultaneous formation of carbon nanotubes, β-SiC nanowires/nanorods, and β-SiC powder.
Journal of Nanomaterials | 2012
Hua Qi; E.R. Glaser; J. D. Caldwell; S. M. Prokes
Vertically aligned, high-density ZnO nanowires (NWs) were grown for the first time on c-plane sapphire using binary alloys of Ni/Au or Cu/Au as the catalyst. The growth was performed under argon gas flow and involved the vapor-liquid-solid (VLS) growth process. We have investigated various ratios of catalyst components for the NWs growth and results indicate that very thin adhesion layers of Ni or Cu deposited prior to the Au layer are not deleterious to the ZnO NW array growth. Significant improvement of the Au adhesion on the substrate was noted, opening the potential for direct catalyst patterning of Au and subsequent NW array growth. Additionally, we found that an increase of in thickness of the Cu adhesion layer results in the simultaneous growth of NWs and nanoplates (NPs), indicating that in this case the growth involves both the VLS and vapor-solid (VS) growth mechanisms. Energy dispersive X-ray spectroscopy (EDX) and surface-enhanced Raman scattering (SERS) studies were also performed to characterize the resulting ZnO NW arrays, indicating that the NWs grown using a thin adhesion layer of Ni or Cu under the Au show comparable SERS enhancement to those of the pure Au-catalyzed NWs.
Japanese Journal of Applied Physics | 2008
Michael A. Mastro; Chul Soo Kim; Mijin Kim; J. D. Caldwell; Ron T. Holm; I. Vurgaftman; Jihyun Kim; Charles R. Eddy; Jerry R. Meyer
A two-dimensional (2D) ZnS photonic crystal was deposited on the surface of a one-dimensional (1D) III–nitride micro cavity light-emitting diode (LED), to intermix the light extraction features of both structures (1D+2D). The deposition of an ideal micro-cavity optical thickness of ≈λ/2 is impractical for III–nitride LEDs, and in realistic multi-mode devices a large fraction of the light is lost to internal refraction as guided light. Therefore, a 2D photonic crystal on the surface of the LED was used to diffract and thus redirect this guided light out of the semiconductor over several hundred microns. Additionally, the employment of a post-epitaxy ZnS 2D photonic crystal avoided the typical etching into the GaN:Mg contact layer, a procedure which can cause damage to the near surface.
Proceedings of SPIE | 2010
Orest J. Glembocki; M. H. Gowda; S. Geng; S. M. Prokes; Nelson Y. Garces; J. Cushen; J. D. Caldwell
Surface-enhanced Raman scattering (SERS) from trinitrotoluene and other nitro-based explosives is important for the development of a reliable detection scheme exhibiting low false-positive rates. However, the interaction of these compounds with Ag and Au causes the molecules to orient in ways such that the primary vibrations of the nitro groups, the main identifying Raman marker of these compounds, are inhibited in addition to causing a reduction in the SERS response. It has recently been shown that cysteamine, which contains amine functional end groups, will electrostatically attract the nitro groups of TNT. Therefore, as the thiol functional group of cysteamine chemically bonds this molecule to the plasmonically-active Au and Ag nanoparticles studied, SERS of TNT can be obtained following the nitro-amine functional group complex formation. It is observed that the cysteamine adsorbs in one of two configurations on the metal surface, with the trans configuration consisting of bonding at the S end of the molecule and the cysteamine is perpendicular to the metal surface, while in the Gauche configuration S bonding occurs, but the molecule bends over towards the metal film surface, approaching the parallel configuration allowing the amine groups interact with the surface. We find that the trans configuration is best for the detection of SERS from TNT. Experiments compare well with DFT calculations of the cysteamine and TNT complex and their adsorption on Ag.
Proceedings of SPIE | 2015
Bryan T. Spann; Ryan Compton; Adam D. Dunkelberger; James P. Long; Paul B. Klein; Daniel Ratchford; J. D. Caldwell; Jeff Owrutsky
Sub-diffractional confinement of light has led to advancements in imaging, metamaterials, nano-manufacturing, plasmonics, and other fields. One potential route to sub-diffractional confinement is via stimulated surface phonon polaritons (SPhPs). SPhPs couple infrared photons with optical phonons and consequently their lifetimes can be longer than surface plasmon polaritons (SPPs), whose lifetimes are dominated by electron scattering events. Thus, materials capable of generating SPhPs are of general interest to study. SPhPs are activated by photons with energies near the Reststrahlen band of semiconductors such as SiC. In this work we examine aspects of carrier dynamics by photo-injecting electrons into the SiC conduction band using a pulsed 355 nm laser and probe the resulting dynamics near the Reststrahlen band using a tunable CO2 laser. The fluence of the pump laser was varied to provide photo-injection levels ranging from ~1x10^17 to 1x10^19 free carriers. Probing the excited-state dynamics near the blue-edge of the Reststrahlen band resulted in complex transient behavior, showing both positive and negative changes in transient reflectance depending on the level of photo-injected carriers and probe energy. Numerical calculations of the SiC reflectance spectra with different doping levels were done to simulate the initial photo-injection level provided by the transient experiment. The computed spectra and the experimentally measured excited spectra for different photo-injection levels were compared and resulted in qualitative agreement.
international semiconductor device research symposium | 2011
Travis J. Anderson; Marko Jak Tadjer; Karl D. Hobart; Tatyana I. Feygelson; J. D. Caldwell; Michael A. Mastro; Jennifer K. Hite; Charles R. Eddy; Fritz J. Kub; J. E. Butler; Bradford B. Pate
Self-heating (reduction of drain current due to lower carrier mobility caused by increased phonon scattering at high drain fields) in high electron mobility transistors (HEMTs) has been well-documented in the literature. However, attempts to alleviate it have been limited. Heat spreading schemes have involved growth of AlGaN/GaN on single crystal [1] or CVD [2] diamond, or capping of fully-processed HEMTs using nanocrystalline diamond (NCD) [3]. All approaches have suffered from reduced HEMT performance or limited substrate size. Recently, a “diamond-before-gate” approach has been successfully demonstrated to both improve the thermal budget of the process by depositing NCD before the thermally sensitive Schottky gate, and to enable large-area diamond implementation [4]. A cross-section of such a device is shown in Figure 1.
Proceedings of SPIE | 2010
M. H. Gowda; Orest J. Glembocki; S. Geng; S. M. Prokes; Nelson Y. Garces; J. D. Caldwell
Surface enhanced Raman scattering (SERS) is a powerful technique for the detection of submonolayer coverage of gold or silver surfaces. The magnitude of the effect and the spectral wavelength of the peak depend on the metal nanoparticles used and its geometry. In this paper we show that the use of chemicals that bind to gold or silver can lead to the clustering of nanoparticles. We used well defined Au nanoparticles in our experiments and add cysteamine to solutions containing the nanoparticles. The plasmonic response of the nanoparticles is measured by transmission Surface Plasmon Resonance (SPR) spectroscopy. We observed significant changes to the SPR spectra that are characteristics of close coupled nanoparticles. The time evolution of these changes indicates the formation of gold nanoparticles clusters. The SERS response of these clustered nanoparticles is observed to red shift from the designed peak wavelength in the green to the red. In addition, the placement of these clusters on dielectric surfaces shifts the SPR even more into the red. The experimental results are supported by calculations of the electromagnetic fields using finite difference methods.