Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. E. Collins is active.

Publication


Featured researches published by J. E. Collins.


Journal of Geophysical Research | 1996

Biomass burning emissions and vertical distribution of atmospheric methyl halides and other reduced carbon gases in the South Atlantic region

Nicola J. Blake; D. R. Blake; Barkley C. Sive; Tai-Yih Chen; F. Sherwood Rowland; J. E. Collins; Glen W. Sachse; Bruce E. Anderson

The NASA TRACE A experiment (September – October 1992) investigated effects of dry season biomass burning emissions from both South America and southern Africa on the tropical South Atlantic troposphere. Whole air canister samples were collected aboard the NASA DC-8 aircraft and analyzed for a wide range of nonmethane hydrocarbons (NMHCs) and halocarbons. Fast response in situ quantification of CH4, CO, and CO2 were also performed on the DC-8. Sampling took place over Brazilian agricultural areas and southern African savanna where there was active biomass burning. The vertical distribution of the measured gases revealed that the concentrations of most hydrocarbons, methyl halides, CH4, CO, and CO2, were enhanced in the boundary layer of these regions principally as a result of biomass fires. Brazilian and African biomass burning emission ratios were calculated for CH3Br, CH3Cl, CH3I, and NMHCs relative to CO and CO2. Although both fire regions were dominated by efficient (flaming) combustion (CO/CO2 ratios <0.1), the Brazilian samples exhibited the lower (more flaming) CO/CO2 ratio of 0.037 compared with the African savanna value of 0.062. This difference in combustion efficiency was reflected in lower ratios versus CO2 for all correlated gases. However, the gases more closely associated with smoldering combustion (e.g., C3H8 and CH3Cl) exhibited significantly higher ratios relative to CO for the Brazilian fires, while the African samples exhibited higher values versus CO for compounds associated more closely with flaming combustion (e.g., C2H2). This variation in the trace gas ratios versus CO is most likely caused by different fuel characteristics. On the basis of the emission ratios obtained, the total biomass burning emission rates for savannas and worldwide were calculated for the hydrocarbons and methyl halides. From these it was estimated that roughly 25% and 20% of global CH3Cl and CH3Br emissions, respectively, derive from biomass burning but that the contribution of biomass burning to total CH3I emissions was not significant.


Journal of Geophysical Research | 1996

Assessment of ozone photochemistry in the western North Pacific as inferred from PEM-West A observations during the fall 1991

D. D. Davis; J. H. Crawford; G. Chen; W. L. Chameides; Shaw-Chen Liu; J. D. Bradshaw; S. T. Sandholm; G. W. Sachse; G. L. Gregory; Bruce E. Anderson; J. Barrick; A. S. Bachmeier; J. E. Collins; Edward V. Browell; D. R. Blake; Scott K. Rowland; Y. Kondo; H. B. Singh; Robert W. Talbot; Brian G. Heikes; John T. Merrill; José F. Rodríguez; Reginald E. Newell

This study examines the influence of photochemical processes on ozone distributions in the western North Pacific. The analysis is based on data generated during NASAs western Pacific Exploratory Mission (PEM-West A) during the fall of 1991. Ozone trends were best described in terms of two geographical domains: the western North Pacific rim (WNPR) and the western tropical North Pacific (WTNP). For both geographical regions, ozone photochemical destruction, D(O3), decreased more rapidly with altitude than did photochemical formation, F(O3). Thus the ozone tendency, P(O3), was typically found to be negative for z 6–8 km. For nearly all altitudes and latitudes, observed nonmethane hydrocarbon (NMHC) levels were shown to be of minor importance as ozone precursor species. Air parcel types producing the largest positive values of P(O3) included fresh continental boundary layer (BL) air and high-altitude (z > 7 km) parcels influenced by deep convection/lightning. Significant negative P(O3) values were found when encountering clean marine BL air or relatively clean lower free-tropospheric air. Photochemical destruction and formation fluxes for the Pacific rim region were found to exceed average values cited for marine dry deposition and stratospheric injection in the northern hemisphere by nearly a factor of 6. This region was also found to be in near balance with respect to column-integrated O3 photochemical production and destruction. By contrast, for the tropical regime column-integrated O3 showed photochemical destruction exceeding production by nearly 80%. Both transport of O3 rich midlatitude air into the tropics as well as very high-altitude (10–17 km) photochemical O3 production were proposed as possible additional sources that might explain this estimated deficit. Results from this study further suggest that during the fall time period, deep convection over Asia and Malaysia/Indonesia provided a significant source of high-altitude NOx to the western Pacific. Given that the high-altitude NOx lifetime is estimated at between 3 and 9 days, one would predict that this source added significantly to high altitude photochemical O3 formation over large areas of the western Pacific. When viewed in terms of strong seasonal westerly flow, its influence would potentially span a large part of the Pacific.


Journal of Geophysical Research | 1996

Aerosols from biomass burning over the tropical South Atlantic region: Distributions and impacts

Bruce E. Anderson; William B. Grant; G. L. Gregory; Edward V. Browell; J. E. Collins; Glen W. Sachse; Donald R. Bagwell; Charles H. Hudgins; D. R. Blake; Nicola J. Blake

The NASA Global Tropospheric Experiment (GTE) Transport and Atmospheric Chemistry Near the Equator-Atlantic (TRACE A) expedition was conducted September 21 through October 26, 1992, to investigate factors responsible for creating the seasonal South Atlantic tropospheric ozone maximum. During these flights, fine aerosol (0.1–3.0 μm) number densities were observed to be enhanced roughly tenfold over remote regions of the tropical South Atlantic and greater over adjacent continental areas, relative to northern hemisphere observations and to measurements recorded in the same area during the wet season. Chemical and meteorological analyses as well as visual observations indicate that the primary source of these enhancements was biomass burning occurring within grassland regions of north central Brazil and southeastern Africa. These fires exhibited fine aerosol (N) emission ratios relative to CO (dN/dCO) of 22.5 ± 9.7 and 23.6 ± 15.1 cm−3 parts per billion by volume (ppbv)−1 over Brazil and Africa, respectively. Convection coupled with counterclockwise flow around the South Atlantic subtropical anticyclone subsequently distributed these aerosols throughout the remote South Atlantic troposphere. We calculate that dilute smoke from biomass burning produced an average tenfold enhancement in optical depth over the continental regions as well as a 50% increase in this parameter over the middle South Atlantic Ocean; these changes correspond to an estimated net cooling of up to 25 W m−2 and 2.4 W m−2 during clear-sky conditions over savannas and ocean respectively. Over the ocean our analyses suggest that modification of CCN concentrations within the persistent eastern Atlantic marine stratocumulus clouds by entrainment of subsiding haze layers could significantly increase cloud albedo resulting in an additional surface radiative cooling potentially greater in magnitude than that caused by direct extinction of solar radiation by the aerosol particles themselves.


Journal of Geophysical Research | 1994

Influence of plumes from biomass burning on atmospheric chemistry over the equatorial and tropical South Atlantic during CITE 3

Meinrat O. Andreae; Bruce E. Anderson; D. R. Blake; J. D. Bradshaw; J. E. Collins; G. L. Gregory; G. W. Sachse; M. C. Shipham

During all eight flights conducted over the equatorial and tropical South Atlantic (27°–35°W, 2°N–11°S; September 9–22, 1989) in the course of the Chemical Instrumentation Test and Evaluation (CITE 3) experiment, we observed haze layers with elevated concentrations of aerosols, O3, CO, and other trace gases related to biomass burning emissions. They occurred at altitudes between 1000 and 5200 m and were usually only some 100–300 m thick. These layers extended horizontally over several 100 km and were marked by the presence of visible brownish haze. These layers strongly influenced the chemical characteristics of the atmosphere over this remote oceanic region. Air mass trajectories indicate that these layers originate in the biomass burning regions of Africa and South America and typically have aged at least 10 days since the time of emission. In the haze layers, O3 and CO concentrations up to 90 and 210 ppb were observed, respectively. The two species were highly correlated. The ratio ΔO3/ΔCO (Δ, concentrations in plume minus background concentrations) is typically in the range 0.2–0.7, much higher than the ratios in the less aged plumes investigated previously in Amazonia. In most cases, aerosol (0.12–3 μm diameter) number concentrations were also elevated by up to 400 cm−3 in the layers; aerosol enrichments were also strongly correlated with elevated CO levels. Clear correlations between CO and NOx enrichments were not apparent due to the age of the plumes, in which most NOx would have already reacted away within 1–2 days. Only in some of the plumes could clear correlations between NOy and CO be identified; the absence of a general correlation between NOy and CO may be due to instrumental limitations and to variable sinks for NOy. The average enrichment of ΔNOy/ΔCO was quite high, consistent with the efficient production of ozone observed in the plumes. The chemical characteristics of the haze layers, together with remote sensing information and trajectory calculations, suggest that fire emissions (in Africa and/or South America) are the primary source of the haze layer components.


Journal of Geophysical Research | 1997

Distribution and seasonality of selected hydrocarbons and halocarbons over the western Pacific basin during PEM‐West A and PEM‐West B

Nicola J. Blake; D. R. Blake; Tai-Yih Chen; J. E. Collins; Glen W. Sachse; Bruce E. Anderson; F. Sherwood Rowland

Nonmethane hydrocarbons (NMHCs) and halocarbons were measured in the troposphere over the northwestern Pacific as part of the airborne component of NASAs Pacific Exploratory Mission-West Phase B (PEM-West B). This study took place in late winter of 1994, a period characterized by maximum outflow from the Asian continent. The results are compared to those from Pacific Exploratory Mission-West Phase A (PEM-West A), which was flown in the same region during late summer of 1991, when flow from the subtropical western Pacific dominated the lower troposphere. Mixing ratios of NMHCs, tetrachloroethene (C2Cl4), and methyl bromide (CH3Br) were significantly higher during PEM-West B than during PEM-West A, particularly at latitudes north of 25°N and altitudes lower than 6 km. The primary reasons for these higher ambient concentrations were the seasonal increase in the atmospheric lifetimes of trace gases controlled by HO radical reactions, and the more frequent input of continental air masses. During PEM-West B, air masses of continental origin observed north of 25°N latitude were augmented with urban signature gases such as C2Cl4. By contrast, more southerly continental outflow had characteristics associated with combustion sources such as biomass burning, including wood fuel burning. During the summer PEM-West A period, the spatial distribution of methyl iodide (CH3I) was consistent with effective oceanic sources at all latitudes, being especially strong in tropical and subtropical regions. At low latitudes, PEM-West B CH3I mixing ratios in the lower troposphere were similar to PEM-West A, but at latitudes greater than about 25°N PEM-West B concentrations were significantly reduced. Equatorial regions exhibited enhanced CH3I mixing ratios extending into the upper tropical troposphere, consistent with fast vertical transport of air from the tropical marine boundary layer.


Journal of Geophysical Research | 1997

Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during February-March 1994: Results from PEM-West B

Robert W. Talbot; Jack E. Dibb; Barry Lefer; J. D. Bradshaw; S. T. Sandholm; D. R. Blake; N. J. Blake; G. W. Sachse; J. E. Collins; B J Heikes; John T. Merrill; G. L. Gregory; Bruce E. Anderson; H. B. Singh; Donald C. Thornton; Alan R. Bandy; R. Pueschel

We present here the chemical composition of outflow from the Asian continent to the atmosphere over the western Pacific basin during the Pacific Exploratory Mission-West (PEM-West B) in February–March 1994. Comprehensive measurements of important tropospheric trace gases and aerosol particulate matter were performed from the NASA DC-8 airborne laboratory. Backward 5 day isentropic trajectories were used to partition the outflow from two major source regions: continental north (>20°N) and continental south (<20°N). Air parcels that had not passed over continental areas for the previous 5 days were classified as originating from an aged marine source. The trajectories and the chemistry together indicated that there was extensive rapid outflow of air parcels at altitudes below 5 km, while aged marine air was rarely encountered and only at <20°N latitude. The outflow at low altitudes had enhancements in common industrial solvent vapors such as C2Cl4, CH3CCl3, and C6H6, intermixed with the combustion emission products C2H2, C2H6, CO, and NO. The mixing ratios of all species were up to tenfold greater in outflow from the continental north compared to the continental south source region, with 210Pb concentrations reaching 38 fCi (10−15 curies) per standard cubic meter. In the upper troposphere we again observed significant enhancements in combustion-derived species in the 8–10 km altitude range, but water-soluble trace gases and aerosol species were depleted. These observations suggest that ground level emissions were lofted to the upper troposphere by wet convective systems which stripped water-soluble components from these air parcels. There were good correlations between C2H2 and CO and C2H6 (r2=0.70–0.97) in these air parcels and much weaker ones between C2H2 and H2O2 or CH3OOH (r2 ≈0.50). These correlations were the strongest in the continental north outflow where combustion inputs appeared to be recent (1–2 days old). Ozone and PAN showed general correlation in these same air parcels but not with the combustion products. It thus appears that several source inputs were intermixed in these upper tropospheric air masses, with possible contributions from European or Middle Eastern source regions. In aged marine air mixing ratios of O3 (≈20 parts per billion by volume) and PAN (≤10 parts per trillion by volume) were nearly identical at <2 km and 10–12 km altitudes due to extensive convective uplifting of marine boundary layer air over the equatorial Pacific even in wintertime. Comparison of the Pacific Exploratory Mission-West A and PEM-West B data sets shows significantly larger mixing ratios of SO2 and H2O2 during PEM-West A. Emissions from eruption of Mount Pinatubo are a likely cause for the former, while suppressed photochemical activity in winter was probably responsible for the latter. This comparison also highlighted the twofold enhancement in C2H2, C2H6, and C3H8 in the continental north outflow during PEM-West B. Although this could be due to reduced OH oxidation rates of these species in wintertime, we argue that increased source emissions are primarily responsible.


Geophysical Research Letters | 1998

Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS

William H. Brune; Ian C. Faloona; David Tan; Andrew J. Weinheimer; Teresa L. Campos; B. A. Ridley; S. A. Vay; J. E. Collins; G. W. Sachse; Lyatt Jaeglé; Daniel J. Jacob

The hydroxyl (OH) and hydroperoxyl (HO2) radicals were measured for the first time throughout the troposphere and in the lower stratosphere with a new instrument aboard the NASA DC-8 aircraft during the 1996 SUCCESS mission. Typically midday OH was 0.1-0.5 pptv and HO2 was 3-15 pptv. Comparisons with a steady-state model yield the following conclusions. First, even in the lower stratosphere OH was sensitive to the albedo of low clouds and distant high clouds. Second, although sometimes in agreement with models, observed OH and HO2 were more than 4 times larger at other times. Evidence suggests that for the California upper troposphere on 10 May this discrepancy was due to unmeasured HOx sources from Asia. Third, observed HO2/OH had the expected inverse dependence with NO, but was inexplicably higher than modeled HO2/OH by an average of 30%. Finally, small-scale, midday OH and HO2 features were strongly linked to NO variations.


Journal of Geophysical Research | 1996

Photostationary state analysis of the NO2‐NO system based on airborne observations from the western and central North Pacific

J. H. Crawford; D. D. Davis; G. Chen; J. D. Bradshaw; S. T. Sandholm; G. L. Gregory; G. W. Sachse; Bruce E. Anderson; J. E. Collins; D. R. Blake; H. B. Singh; Brian G. Heikes; Robert W. Talbot; José F. Rodríguez

On the basis of measurements taken during the NASA Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-West A (PEM-West A), photostationary state model calculations were carried out for approximately 1300 three-minute sample runs. The objective of this study was to look at a subset of this processed data to assess the level of agreement between observed ratios of NO2 to NO and those estimated using current photochemical theory. This filtered data subset consisted of 562 NO2-NO data pairs. The comparison between observations and predictions was based on the use of the photochemical test ratio (NO2)expt/(NO2)calc, designated here as Re/ Rc. Although the expected median value for this test ratio was unity, for the PEM-West A data set it was found to be 3.36. The value of the ratio Re/Rc showed a general trend of increasing magnitude with increasing altitude and decreasing latitude. Attempts to understand the sizable discrepancy between observation and prediction (especially for the high-altitude and low-latitude data) were explored in the context of two hypotheses: (1) incomplete model chemistry and (2) interferences in the measurement of NO2. Efforts to quantify the levels of HO2, CH3O2, RO2, and/or ClOx needed to correct the Re/Rc discrepancy led to major inconsistencies in the predicted levels of other chemical species. Bromine and iodine chemistries were also investigated with results requiring Brx and Ix radical levels well in excess of what would seem reasonable given our current understanding of the source strengths for these elements. This suggests that incompleteness in the models chemistry was unlikely the major cause of the discrepancy. The second hypothesis, involving interference in the measurement of NO2, now appears to be the most likely explanation for the largest component of the deviation in Re/Rc from unity. For example, the disagreement between (NO2)expt and (NO2)calc was found to be a strong function of the NOx/NOy ratio. Also, the magnitude of the discrepancy between (NO2)expt and (NO2)calc fell within the possible limits defined by other reactive nitrogen species (e.g., ΔNOy) available to generate the interference. These results suggest that the further development of a new direct measurement technique for NO2, involving a wall collision-free inlet system, should be considered a high priority. We should also continue, however, to examine the chemical basis of current photochemical models to assess whether yet untested mechanisms might not provide an explanation for these observations.


Journal of Geophysical Research | 1996

Chemical characteristics of continental outflow over the tropical South Atlantic Ocean from Brazil and Africa

Robert W. Talbot; J. D. Bradshaw; S. T. Sandholm; S. Smyth; D. R. Blake; N. R. Blake; G. W. Sachse; J. E. Collins; Brian G. Heikes; Bruce E. Anderson; G. L. Gregory; H. B. Singh; Barry Lefer; A. S. Bachmeier

The chemical characteristics of air parcels over the tropical South Atlantic during September – October 1992 are summarized by analysis of aged marine and continental outflow classifications. Positive correlations between CO and CH3Cl and minimal enhancements of C2Cl4 and various chlorofluorocarbon (CFC) species in air parcels recently advected over the South Atlantic basin strongly suggest an impact on tropospheric chemistry from biomass burning on adjacent continental areas of Brazil and Africa. Comparison of the composition of aged Pacific air with aged marine air over the South Atlantic basin from 0.3 to 12.5 km altitude indicates potential accumulation of long-lived species during the local dry season. This may amount to enhancements of up to two-fold for C2H6, 30% for CO, and 10% for CH3Cl. Nitric oxide and NOx were significantly enhanced (up to ∼1 part per billion by volume (ppbv)) above 10 km altitude and poorly correlated with CO and CH3Cl. In addition, median mixing ratios of NO and NOx were essentially identical in aged marine and continental outflow air masses. It appears that in addition to biomass burning, lightning or recycled reactive nitrogen may be an important source of NOx to the upper troposphere. Methane exhibited a monotonic increase with altitude from ∼1690 to 1720 ppbv in both aged marine and continental outflow air masses. The largest mixing ratios in the upper troposphere were often anticorrelated with CO, CH3Cl, and CO2, suggesting CH4 contributions from natural sources. We also argue, based on CH4/CO ratios and relationships with various hydrocarbon and CFC species, that inputs from biomass burning and the northern hemisphere are unlikely to be the dominant sources of CO, CH4, and C2H6 in aged marine air. Emissions from urban areas would seem to be necessary to account for the distribution of at least CH4 and C2H6. Over the African and South American continents an efficient mechanism of convective vertical transport coupled with large-scale circulations conveys biomass burning, urban, and natural emissions to the upper troposphere over the South Atlantic basin. Slow subsidence over the eastern South Atlantic basin may play an important role in establishing and maintaining the rather uniform vertical distribution of long-lived species over this region. The common occurrence of values greater than 1 for the ratio CH3OOH/H2O2 in the upper troposphere suggests that precipitation scavenging effectively removed highly water soluble gases (H2O2, HNO3, HCOOH, and CH3COOH) and aerosols during vertical convective transport over the continents. However, horizontal injection of biomass burning products over the South Atlantic, particularly water soluble species and aerosol particles, was frequent below 6 km altitude.


Journal of Geophysical Research | 1996

Comparison of free tropospheric western Pacific air mass classification schemes for the PEM‐West A experiment

S. Smyth; J. Bradshaw; S. T. Sandholm; Shaw-Chen Liu; S. A. McKeen; G. L. Gregory; Bruce E. Anderson; Robert W. Talbot; D. R. Blake; Scott K. Rowland; Edward V. Browell; Marta A. Fenn; John T. Merrill; S. Bachmeier; G. W. Sachse; J. E. Collins; Donald C. Thornton; D. D. Davis; H. B. Singh

During September/October 1991, NASAs Global Tropospheric Experiment (GTE) conducted an airborne field measurement program (PEM-West A) in the troposphere over the western Pacific Ocean. In this paper we describe and use the relative abundance of the combustion products C2H2 and CO to classify air masses encountered during PEM-West A based on the degree that these tracers were processed by the combined effects of photochemical reactions and dynamical mixing (termed the degree of atmospheric processing). A large number of trace compounds (e.g., C2H6, C3H8, C6H6, NOy, and O3) are found to be well correlated with the degree of atmospheric processing that is reflected by changes in the ratio of C2H2/CO over the range of values from ∼0.3 to 2.0 (parts per trillion volume) C2H2/(parts per billion volume) CO. This C2H2/CO-based classification scheme is compared to model simulations and to two independent classification schemes based on air mass back-trajectory analyses and lidar profiles of O3 and aerosols. In general, these schemes agree well, and in combination they suggest that the functional dependence that other observed species exhibit with respect to the C2H2/CO atmospheric processing scale can be used to study the origin, sources, and sinks of trace species and to derive several important findings. First, the degree of atmospheric processing is found to be dominated by dilution associated with atmospheric mixing, which is found to primarily occur through the vertical mixing of relatively recent emissions of surface layer trace species. Photochemical reactions play their major role by influencing the background concentrations of trace species that are entrained during the mixing (i.e., dilution) process. Second, a significant noncontinental source(s) of NO (and NOx) in the free troposphere is evident. In particular, the enhanced NO mixing ratios that were observed in convected air masses are attributed to either emissions from lightning or the rapid recycling of NOy compounds. Third, nonsoluble trace species emitted in the continental boundary layer, such as CO and hydrocarbons, are vertically transported to the upper troposphere as efficiently as they are to the midtroposphere. In addition, the mixing ratios of CO and hydrocarbons in the upper troposphere over the western Pacific may reflect a significant contribution from northern hemisphere land areas other than Asia. Finally, we believe that these results can be valuable for the quantitative evaluation of the vertical transport processes that are usually parameterized in models.

Collaboration


Dive into the J. E. Collins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. W. Sachse

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar

D. R. Blake

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. T. Sandholm

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. D. Bradshaw

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Barrick

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Weinheimer

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge