Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. E. Grove is active.

Publication


Featured researches published by J. E. Grove.


The Astrophysical Journal | 1998

Gamma-Ray Spectral States of Galactic Black Hole Candidates

J. E. Grove; W. N. Johnson; Richard A. Kroeger; K. McNaron-Brown; Jeffrey G. Skibo; B. F. Phlips

OSSE has observed seven transient black hole candidates: GRO J0422+32, GX 339-4, GRS 1716-249, GRS 1009-45, 4U 1543-47, GRO J1655-40, and GRS 1915+105. Two gamma-ray spectral states are evident, and based on a limited number of contemporaneous X-ray and gamma-ray observations, these states appear to be correlated with X-ray states. The former three objects show hard spectra below 100 keV (photon number indices Γ < 2) that are exponentially cut off with folding energy ~100 keV, a spectral form that is consistent with thermal Comptonization. This breaking gamma-ray state is the high-energy extension of the X-ray low, hard state. In this state, the majority of the luminosity is above the X-ray band, carried by photons of energy ~100 keV. The latter four objects exhibit a power-law gamma-ray state, with a relatively soft spectral index (Γ ~ 2.5-3) and no evidence for a spectral break. For GRO J1655-40, the lower limit on the break energy is 690 keV. GRS 1716-249 exhibits both spectral states, with the power-law state having significantly lower gamma-ray luminosity. The power-law gamma-ray state is associated with the presence of a strong ultrasoft X-ray excess (kT ~ 1 keV), the signature of the X-ray high, soft (or perhaps very high) state. The physical process responsible for the unbroken power law is not well understood, although the spectra are consistent with bulk-motion Comptonization in the convergent accretion flow.


The Astrophysical Journal | 2010

Eight gamma-ray pulsars discovered in blind frequency searches of Fermi LAT data

P. M. Saz Parkinson; M. Dormody; M. Ziegler; Paul S. Ray; Aous A. Abdo; J. Ballet; Matthew G. Baring; A. Belfiore; T. H. Burnett; G. A. Caliandro; F. Camilo; Patrizia A. Caraveo; A. De Luca; E. C. Ferrara; P. C. C. Freire; J. E. Grove; C. Gwon; A. K. Harding; R. P. Johnson; T. J. Johnson; S. Johnston; M. J. Keith; M. Kerr; J. Knödlseder; A. Makeev; M. Marelli; P. F. Michelson; D. Parent; S. M. Ransom; O. Reimer

We report the discovery of eight gamma-ray pulsars in blind frequency searches using the LAT, onboard the Fermi Gamma-ray Space Telescope. Five of the eight pulsars are young (tau_c 10^36 erg/s), and located within the Galactic plane (|b|<3 deg). The remaining three are older, less energetic, and located off the plane. Five pulsars are associated with sources included in the LAT bright gamma-ray source list, but only one, PSR J1413-6205, is clearly associated with an EGRET source. PSR J1023-5746 has the smallest characteristic age (tau_c=4.6 kyr) and is the most energetic (Edot=1.1E37 erg/s) of all gamma-ray pulsars discovered so far in blind searches. PSRs J1957+5033 and J2055+25 have the largest characteristic ages (tau_c~1 Myr) and are the least energetic (Edot~5E33 erg/s) of the newly-discovered pulsars. We present the timing models, light curves, and detailed spectral parameters of the new pulsars. We used recent XMM observations to identify the counterpart of PSR J2055+25 as XMMU J205549.4+253959. In addition, publicly available archival Chandra X-ray data allowed us to identify the likely counterpart of PSR J1023-5746 as a faint, highly absorbed source, CXOU J102302.8-574606. The large X-ray absorption indicates that this could be among the most distant gamma-ray pulsars detected so far. PSR J1023-5746 is positionally coincident with the TeV source HESS J1023-575, located near the young stellar cluster Westerlund 2, while PSR J1954+2836 is coincident with a 4.3 sigma excess reported by Milagro at a median energy of 35 TeV. Deep radio follow-up observations of the eight pulsars resulted in no detections of pulsations and upper limits comparable to the faintest known radio pulsars, indicating that these can be included among the growing population of radio-quiet pulsars in our Galaxy being uncovered by the LAT, and currently numbering more than 20.


The Astrophysical Journal | 1997

An Intense Gamma-Ray Flare of PKS 1622–297

John Richard Mattox; S. J. Wagner; M. Malkan; Thomas A. McGlynn; Jonathan F. Schachter; J. E. Grove; W. N. Johnson; J. D. Kurfess

We report the observation by the Compton Gamma Ray Observatory of a spectacular flare of radio source PKS 1622-297. A peak flux of (17 ± 3) × 10-6 cm-2 s-1 (E > 100 MeV) was observed. The corresponding isotropic luminosity is 2.9 × 1049 ergs s-1. We find that PKS 1622-297 exhibits γ-ray intraday variability. A flux increase by a factor of at least 3.6 was observed to occur in less than 7.1 hr (with 99% confidence). Assuming an exponential rise, the corresponding doubling time is less than 3.8 hr. A significant flux decrease by a factor of ~2 in 9.7 hr was also observed. Without beaming, the rapid flux change and large isotropic luminosity are inconsistent with the Elliot-Shapiro condition (assuming that gas accretion is the immediate source of power for the γ-rays). This inconsistency suggests that the γ-ray emission is beamed. A minimum Doppler factor of 8.1 is implied by the observed lack of pair-production opacity (assuming X-rays are emitted cospatially with the γ-rays). Simultaneous observation by EGRET and OSSE finds a spectrum adequately fitted by a power law with photon index of -1.9. Although the significance is not sufficient to establish this beyond doubt, the high-energy γ-ray spectrum appears to evolve from hard to soft as a flare progresses.


The Astrophysical Journal | 2011

Three Millisecond Pulsars in FERMI LAT Unassociated Bright Sources

Scott M. Ransom; Paul S. Ray; F. Camilo; Mallory Strider Ellison Roberts; Ö. Çelik; Michael T. Wolff; C. C. Cheung; M. Kerr; T. T. Pennucci; Megan E. DeCesar; I. Cognard; A. G. Lyne; B. W. Stappers; P. C. C. Freire; J. E. Grove; A. A. Abdo; G. Desvignes; Davide Donato; E. C. Ferrara; N. Gehrels; L. Guillemot; Chul Gwon; A. K. Harding; S. Johnston; M. J. Keith; M. Kramer; P. F. Michelson; D. Parent; P. M. Saz Parkinson; Roger W. Romani

We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and γ-ray millisecond pulsars (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind γ-ray pulsation searches. They seem to be relatively normal, nearby (≤2 kpc) MSPs. These observations, in combination with the Fermi detection of γ-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient γ-ray producers. The γ-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of ~1030-1031 erg s–1 are typical of the rare radio MSPs seen in X-rays.


The Astrophysical Journal | 2011

DISCOVERY OF TWO MILLISECOND PULSARS IN FERMI SOURCES WITH THE NANÇAY RADIO TELESCOPE

I. Cognard; L. Guillemot; T. J. Johnson; D. A. Smith; C. Venter; A. K. Harding; Michael T. Wolff; C. C. Cheung; Davide Donato; A. A. Abdo; J. Ballet; F. Camilo; G. Desvignes; D. Dumora; E. C. Ferrara; P. C. C. Freire; J. E. Grove; S. Johnston; M. J. Keith; M. Kramer; A. G. Lyne; P. F. Michelson; D. Parent; S. M. Ransom; Paul S. Ray; Roger W. Romani; P. M. Saz Parkinson; B. W. Stappers; G. Theureau; D. J. Thompson

We report the discovery of two millisecond pulsars in a search for radio pulsations at the positions of \emph{Fermi Large Area Telescope} sources with no previously known counterparts, using the Nancay radio telescope. The two millisecond pulsars, PSRs J2017+0603 and J2302+4442, have rotational periods of 2.896 and 5.192 ms and are both in binary systems with low-eccentricity orbits and orbital periods of 2.2 and 125.9 days respectively, suggesting long recycling processes. Gamma-ray pulsations were subsequently detected for both objects, indicating that they power the associated \emph{Fermi} sources in which they were found. The gamma-ray light curves and spectral properties are similar to those of previously-detected gamma-ray millisecond pulsars. Detailed modeling of the observed radio and gamma-ray light curves shows that the gamma-ray emission seems to originate at high altitudes in their magnetospheres. Additionally, X-ray observations revealed the presence of an X-ray source at the position of PSR J2302+4442, consistent with thermal emission from a neutron star. These discoveries along with the numerous detections of radio-loud millisecond pulsars in gamma rays suggest that many \emph{Fermi} sources with no known counterpart could be unknown millisecond pulsars.


The Astrophysical Journal | 1997

Accelerated Particle Composition and Energetics and Ambient Abundances from Gamma-Ray Spectroscopy of the 1991 June 4 Solar Flare

Ronald J. Murphy; G. H. Share; J. E. Grove; W. N. Johnson; R. L. Kinzer; J. D. Kurfess; M. S. Strickman; G. V. Jung

The Oriented Scintillation Spectrometer Experiment (OSSE) on board the Compton Gamma Ray Observatory observed the 1991 June 4 X12+ solar flare, one of the most intense nuclear gamma-ray line flares observed to date. Using these OSSE observations, we have derived time profiles of the various components of gamma-ray emission and obtained information about the accelerated particle spectra and composition and about the ambient plasma at the flare site. The main results are (1) the nuclear reactions associated with the impulsive phase of the flare continued for at least 2 hours and resulted from ions that were probably continuously accelerated rather than impulsively accelerated and trapped; (2) the total energy in these accelerated ions exceeded the energy in >0.1 MeV electrons; (3) the accelerated α/proton ratio was closer to 0.5 than to 0.1; (4) there is evidence for a decrease of the accelerated heavy ion-to-proton ratio as the flare progressed; (5) there is evidence for a temporal change in the composition of the flare plasma; (6) the ratio of electron bremsstrahlung to the flux in narrow γ-ray lines decreased as the flare progressed; (7) the high-energy (>16 MeV) component of the electron spectrum was much more impulsive than the lower energy ~MeV component; (8) a model-dependent upper limit of 2.3 × 10-5 was obtained for the photospheric 3He/H abundance ratio; and (9) energetic ions may have been present for several hours prior to and following the impulsive phase of the flare.


The Astrophysical Journal | 2012

Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

L. Guillemot; T. J. Johnson; C. Venter; M. Kerr; B. Pancrazi; Margaret A. Livingstone; G. H. Janssen; P. Jaroenjittichai; M. Kramer; I. Cognard; B. W. Stappers; Alice K. Harding; F. Camilo; C. Espinoza; P. C. C. Freire; F. Gargano; J. E. Grove; S. Johnston; P. F. Michelson; A. Noutsos; D. Parent; Scott M. Ransom; Paul S. Ray; R. M. Shannon; David Stanley Smith; G. Theureau; S. E. Thorsett; N. Webb

We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the \emph{Fermi} Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival \emph{RXTE} and \emph{XMM-Newton} X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (


The Astrophysical Journal | 2011

The Discovery and Nature of the Optical Transient CSS100217:102913+404220

Andrew J. Drake; S. G. Djorgovski; Ashish A. Mahabal; J. P. Anderson; Rustum Roy; V. Mohan; Swara Ravindranath; Dale A. Frail; S. Gezari; James D. Neill; Luis C. Ho; J. L. Prieto; D. Thompson; John R. Thorstensen; M. Wagner; R. Kowalski; J. Chiang; J. E. Grove; F. K. Schinzel; D. L. Wood; L. Carrasco; E. Recillas; L. Kewley; K. N. Archana; Aritra Basu; Yogesh Wadadekar; Brijesh Kumar; Adam D. Myers; E. S. Phinney; Roy Williams

\sim 4\sigma


The Astrophysical Journal | 1999

X-Ray/Gamma-Ray Observations of the PSR B1259–63/SS 2883 System near Apastron

M. Hirayama; L. R. Cominsky; V. M. Kaspi; Fumiaki Nagase; Marco Tavani; Nobuyuki Kawai; J. E. Grove

) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.


The Astrophysical Journal | 2014

Fermi Large Area Telescope detection of gravitational lens delayed γ-ray flares from blazar B0218+357

C. C. Cheung; Stefan Larsson; J. D. Scargle; Mustafa A. Amin; R. D. Blandford; D. Bulmash; J. Chiang; S. Ciprini; R. H. D. Corbet; Emilio E. Falco; Philip J. Marshall; D. L. Wood; M. Ajello; D. Bastieri; A. Chekhtman; F. D'Ammando; M. Giroletti; J. E. Grove; B. Lott; R. Ojha; M. Orienti; J. S. Perkins; M. Razzano; A. W. Smith; D. J. Thompson; K. S. Wood

We report on the discovery and observations of the extremely luminous optical transient CSS100217:102913+404220 (CSS100217 hereafter). Spectroscopic observations showed that this transient was coincident with a galaxy at redshift z = 0.147 and reached an apparent magnitude of V ~ 16.3. After correcting for foreground Galactic extinction we determine the absolute magnitude to be M_V = –22.7 approximately 45 days after maximum light. Over a period of 287 rest-frame days, this event had an integrated bolometric luminosity of 1.3 × 10^(52) erg based on time-averaged bolometric corrections of ~15 from V- and R-band observations. Analysis of the pre-outburst Sloan Digital Sky Survey (SDSS) spectrum of the source shows features consistent with a narrow-line Seyfert 1 galaxy. High-resolution Hubble Space Telescope and Keck follow-up observations show that the event occurred within 150 pc of the nucleus of the galaxy, suggesting a possible link to the active nuclear region. However, the rapid outburst along with photometric and spectroscopic evolution are much more consistent with a luminous supernova. Line diagnostics suggest that the host galaxy is undergoing significant star formation. We use extensive follow-up of the event along with archival Catalina Sky Survey NEO search and SDSS data to investigate the three most likely sources of such an event: (1) an extremely luminous supernova, (2) the tidal disruption of a star by the massive nuclear black hole, and (3) variability of the central active galactic nucleus (AGN). We find that CSS100217 was likely an extremely luminous Type IIn supernova and occurred within the range of the narrow-line region of an AGN. We discuss how similar events may have been missed in past supernova surveys because of confusion with AGN activity.

Collaboration


Dive into the J. E. Grove's collaboration.

Top Co-Authors

Avatar

W. N. Johnson

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. D. Kurfess

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. S. Strickman

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul S. Ray

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. L. Kinzer

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. V. Jung

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar

M. Kerr

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

M. P. Ulmer

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge