Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. E. Stalnaker is active.

Publication


Featured researches published by J. E. Stalnaker.


Science | 2008

Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place

T. Rosenband; D. B. Hume; P. O. Schmidt; Chin-Wen Chou; A. Brusch; Luca Lorini; Windell H. Oskay; Robert E. Drullinger; Tara M. Fortier; J. E. Stalnaker; Scott A. Diddams; William C. Swann; Nathan R. Newbury; Wayne M. Itano; David J. Wineland; J. C. Bergquist

Time has always had a special status in physics because of its fundamental role in specifying the regularities of nature and because of the extraordinary precision with which it can be measured. This precision enables tests of fundamental physics and cosmology, as well as practical applications such as satellite navigation. Recently, a regime of operation for atomic clocks based on optical transitions has become possible, promising even higher performance. We report the frequency ratio of two optical atomic clocks with a fractional uncertainty of 5.2 × 10–17. The ratio of aluminum and mercury single-ion optical clock frequencies νAl+/νHg+ is 1.052871833148990438(55), where the uncertainty comprises a statistical measurement uncertainty of 4.3 × 10–17, and systematic uncertainties of 1.9 × 10–17 and 2.3 × 10–17 in the mercury and aluminum frequency standards, respectively. Repeated measurements during the past year yield a preliminary constraint on the temporal variation of the fine-structure constant α of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \({\dot{{\alpha}}}{/}{\alpha}=(-1.6{\pm}2.3){\times}10^{-17}{/}\mathrm{year}\) \end{document}.


Science | 2008

Sr Lattice Clock at 1 x 10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock

Andrew D. Ludlow; Tanya Zelevinsky; Gretchen K. Campbell; Sebastian Blatt; Martin M. Boyd; M. H. G. de Miranda; Michael J. Martin; Jan Thomsen; J. Ye; Tara M. Fortier; J. E. Stalnaker; Scott A. Diddams; Y. Le Coq; Zeb W. Barber; N. Poli; Nathan D. Lemke; K. M. Beck; Christopher W. Oates

Optical atomic clocks promise timekeeping at the highest precision and accuracy, owing to their high operating frequencies. Rigorous evaluations of these clocks require direct comparisons between them. We have realized a high-performance remote comparison of optical clocks over kilometer-scale urban distances, a key step for development, dissemination, and application of these optical standards. Through this remote comparison and a proper design of lattice-confined neutral atoms for clock operation, we evaluate the uncertainty of a strontium (Sr) optical lattice clock at the 1 × 10–16 fractional level, surpassing the current best evaluations of cesium (Cs) primary standards. We also report on the observation of density-dependent effects in the spin-polarized fermionic sample and discuss the current limiting effect of blackbody radiation–induced frequency shifts.


Physical Review Letters | 2007

Coherent Optical Phase Transfer over a 32-km Fiber with 1 s Instability at 10 − 17

Andrew D. Ludlow; M. H. G. de Miranda; J. E. Stalnaker; Scott A. Diddams; J. Ye

The phase coherence of an ultrastable optical frequency reference is fully maintained over actively stabilized fiber networks of lengths exceeding 30 km. For a 7-km link installed in an urban environment, the transfer instability is 6 x 10{-18} at 1 s. The excess phase noise of 0.15 rad, integrated from 8 mHz to 25 MHz, yields a total timing jitter of 0.085 fs. A 32-km link achieves similar performance. Using frequency combs at each end of the coherent-transfer fiber link, a heterodyne beat between two independent ultrastable lasers, separated by 3.5 km and 163 THz, achieves a 1-Hz linewidth.


Physical Review Letters | 2007

Observation of the 1S0-->3P0 clock transition in 27Al+.

T. Rosenband; P. O. Schmidt; D. B. Hume; Wayne M. Itano; Tara M. Fortier; J. E. Stalnaker; Keun Su Kim; Scott A. Diddams; J.C.J. Koelemeij; J. C. Bergquist; David J. Wineland

We report, for the first time, laser spectroscopy of the 1S0-->3P0 clock transition in 27Al+. A single aluminum ion and a single beryllium ion are simultaneously confined in a linear Paul trap, coupled by their mutual Coulomb repulsion. This coupling allows the beryllium ion to sympathetically cool the aluminum ion and also enables transfer of the aluminums electronic state to the berylliums hyperfine state, which can be measured with high fidelity. These techniques are applied to measure the clock transition frequency nu=1,121,015,393,207,851(6) Hz. They are also used to measure the lifetime of the metastable clock state tau=20.6+/-1.4 s, the ground state 1S0 g factor gS=-0.000,792,48(14), and the excited state 3P0 g factor gP=-0.001,976,86(21), in units of the Bohr magneton.


Advances in Atomic Molecular and Optical Physics | 2008

Direct frequency comb spectroscopy

Matthew C. Stowe; Michael J. Thorpe; Avi Pe'er; J. Ye; J. E. Stalnaker; Vladislav Gerginov; Scott A. Diddams

We summarize recent developments in direct frequency-comb spectroscopy that allowed high-resolution, broad-bandwidth measurements of multiple atomic and molecular resonances using only a phase-stabilized femtosecond laser, opening the way for merging precision spectroscopy with coherent control.


Physical Review Letters | 2009

Observation of a Large Atomic Parity Violation Effect in Ytterbium

K. Tsigutkin; D. R. Dounas-Frazer; A. Family; J. E. Stalnaker; Valeriy V. Yashchuk; Dmitry Budker

Atomic parity violation has been observed in the 6s(2 1)S(0)-->5d6s(3)D(1) 408-nm forbidden transition of ytterbium. The parity-violating amplitude is found to be 2 orders of magnitude larger than in cesium, where the most precise experiments to date have been performed. This is in accordance with theoretical predictions and constitutes the largest atomic parity-violating amplitude yet observed. This also opens the way to future measurements of neutron distributions and anapole moments by comparing parity-violating amplitudes for various isotopes and hyperfine components of the transition.


Physical Review Letters | 2007

Observation of theS01→P03Clock Transition inAl+27

T. Rosenband; P. O. Schmidt; David A. Hume; Wayne M. Itano; Tara M. Fortier; J. E. Stalnaker; Kyoungsik Kim; Scott A. Diddams; J.C.J. Koelemeij; J. C. Bergquist; D. J. Wineland

We report, for the first time, laser spectroscopy of the 1S0-->3P0 clock transition in 27Al+. A single aluminum ion and a single beryllium ion are simultaneously confined in a linear Paul trap, coupled by their mutual Coulomb repulsion. This coupling allows the beryllium ion to sympathetically cool the aluminum ion and also enables transfer of the aluminums electronic state to the berylliums hyperfine state, which can be measured with high fidelity. These techniques are applied to measure the clock transition frequency nu=1,121,015,393,207,851(6) Hz. They are also used to measure the lifetime of the metastable clock state tau=20.6+/-1.4 s, the ground state 1S0 g factor gS=-0.000,792,48(14), and the excited state 3P0 g factor gP=-0.001,976,86(21), in units of the Bohr magneton.


Physical Review A | 2008

Frequency evaluation of the doubly forbidden 1S0–3P0 transition in bosonic 174Yb

N. Poli; Zeb W. Barber; Nathan D. Lemke; Christopher W. Oates; Long-Sheng Ma; J. E. Stalnaker; Tara M. Fortier; Scott A. Diddams; Leo W. Hollberg; J. C. Bergquist; A. Brusch; Steven R. Jefferts; Thomas P. Heavner; Thomas E. Parker

We report an uncertainty evaluation of an optical lattice clock based on the


Physical Review Letters | 2004

Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer

M. Auzinsh; Dmitry Budker; D. F. Kimball; S. M. Rochester; J. E. Stalnaker; A. O. Sushkov; Valeriy V. Yashchuk

^{1}{S}_{0}\ensuremath{\leftrightarrow}^{3}{P}_{0}


Physical Review Letters | 2006

Kilohertz-Resolution Spectroscopy of Cold Atoms with an Optical Frequency Comb

Tara M. Fortier; Y. Le Coq; J. E. Stalnaker; Davi Ortega; Scott A. Diddams; Christopher W. Oates; Leo W. Hollberg

transition in the bosonic isotope

Collaboration


Dive into the J. E. Stalnaker's collaboration.

Top Co-Authors

Avatar

Scott A. Diddams

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Tara M. Fortier

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Leo W. Hollberg

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Christopher W. Oates

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Dmitry Budker

University of California

View shared research outputs
Top Co-Authors

Avatar

Wayne M. Itano

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

J. C. Bergquist

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Luca Lorini

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Zeb W. Barber

Montana State University

View shared research outputs
Top Co-Authors

Avatar

Steven R. Jefferts

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge