Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Geiger is active.

Publication


Featured researches published by J. Geiger.


Plasma Physics and Controlled Fusion | 2008

Major results from the stellarator Wendelstein 7-AS (Review Article)

M. Hirsch; J. Baldzuhn; C. D. Beidler; R. Brakel; R. Burhenn; A. Dinklage; H. Ehmler; M. Endler; V. Erckmann; Y. Feng; J. Geiger; L. Giannone; G. Grieger; P. Grigull; H.-J. Hartfuss; D. Hartmann; R. Jaenicke; R. König; H. P. Laqua; H. Maassberg; K. McCormick; F. Sardei; E. Speth; U. Stroth; F. Wagner; A. Weller; A. Werner; S. Zoletnik; W As Team

Wendelstein 7-AS was the first modular stellarator device to test some basic elements of stellarator optimization: a reduced Shafranov shift and improved stability properties resulted in β-values up to 3.4% (at 0.9 T). This operational limit was determined by power balance and impurity radiation without noticeable degradation of stability or a violent collapse. The partial reduction of neoclassical transport could be verified in agreement with calculations indicating the feasibility of the concept of drift optimization. A full neoclassical optimization, in particular a minimization of the bootstrap current was beyond the scope of this project. A variety of non-ohmic heating and current drive scenarios by ICRH, NBI and in particular, ECRH were tested and compared successfully with their theoretical predictions. Besides, new heating schemes of overdense plasmas were developed such as RF mode conversion heating—Ordinary mode, Extraordinary mode, Bernstein-wave (OXB) heating—or 2nd harmonic O-mode (O2) heating. The energy confinement was about a factor of 2 above ISS95 without degradation near operational boundaries. A number of improved confinement regimes such as core electron-root confinement with central Te ≤ 7 keV and regimes with strongly sheared radial electric field at the plasma edge resulting in Ti ≤ 1.7 keV were obtained. As the first non-tokamak device, W7-AS achieved the H-mode and moreover developed a high density H-mode regime (HDH) with strongly reduced impurity confinement that allowed quasi-steady-state operation (τ ≈ 65 · τE) at densities (at 2.5 T). The first island divertor was tested successfully and operated with stable partial detachment in agreement with numerical simulations. With these results W7-AS laid the physics background for operation of an optimized low-shear steady-state stellarator.


Physics of Plasmas | 2001

Survey of magnetohydrodynamic instabilities in the advanced stellarator Wendelstein 7-AS

A. Weller; M. Anton; J. Geiger; M. Hirsch; R. Jaenicke; A. Werner; W As Team; C. Nührenberg; E. Sallander; Donald A. Spong

Magnetohydrodynamic (MHD) instabilities in the Wendelstein 7-AS stellarator (W7-AS) [G. Grieger et al., Phys. Fluids B 4, 2081 (1992)] are characterized experimentally in various plasma parameter regimes and heating scenarios. The observations are compared with theoretical predictions for particular cases. In the high-β range (〈β〉⩽2%) no clear evidence of a stability β-limit could be found yet. In the lower β regime fast particle driven global Alfven modes are the most important instabilities during neutral beam injection (NBI). Besides of coherent modes with almost no effect on the plasma performance additional Alfven modes appear at higher frequencies up to 400 kHz, which show nonlinear phenomena-like bursting, frequency chirping, and MHD induced energy and fast particle losses. The activity of edge localized modes (ELMs) is investigated in NBI heated discharges. The issue of current driven instabilities and their potential stabilization by a stellarator field has been investigated with regard to the de...


Nuclear Fusion | 2015

Plans for the first plasma operation of Wendelstein 7-X

T. S. Pedersen; T. Andreeva; H.-S. Bosch; S. Bozhenkov; F. Effenberg; M. Endler; Y. Feng; D.A. Gates; J. Geiger; D. Hartmann; H. Hölbe; M. Jakubowski; R. König; H. P. Laqua; Samuel Lazerson; M. Otte; M. Preynas; O. Schmitz; T. Stange; Y. Turkin

Wendelstein 7-X (W7-X) is currently under commissioning in preparation for its initial plasma operation phase, operation phase 1.1 (OP1.1). This first phase serves primarily to provide an integral commissioning of all major systems needed for plasma operation, as well as systems, such as diagnostics, that need plasma operation to verify their foreseen functions. In OP1.1, W7-X will have a reduced set of in-vessel components. In particular, five graphite limiter stripes replace the later foreseen divertor. This paper describes the expected machine capabilities in OP1.1, as well as a selection of physics topics that can be addressed in OP1.1, despite the simplified configuration and the reduced machine capabilities. Physics topics include the verification and adjustment of the magnetic topology, the testing of the foreseen plasma start-up scenarios and the feed-forward control of plasma density and temperature evolution, as well as more advanced topics such as scrape-off layer (SOL) studies at short connection lengths and transport studies. Plasma operation in OP1.1 will primarily be performed in helium, with a hydrogen plasma phase at the end.


Fusion Science and Technology | 2006

Current Control by ECCD for W7-X

Yu. Turkin; H. Maassberg; C. D. Beidler; J. Geiger; N. B. Marushchenko

Abstract The magnetic configuration of the Wendelstein 7-X (W7-X) stellarator is optimized following a set of criteria including a rotational transform profile with low shear and minimized bootstrap current that must be controlled for proper functioning of the island divertor. This paper studies the compensation of residual bootstrap current by using electron cyclotron current drive (ECCD). The modeling shows that the loop voltage induced by ECCD leads to a redistribution of the current density with a diffusion time of ~2 s. The relaxation time of the total current is much longer, however - for W7-X plasma parameters the total toroidal current reaches steady state after several L/R times requiring hundreds of seconds. In order to keep the toroidal current and its profile in the acceptable range, a feed-forward or predictive control method using ECCD as actuator is proposed. The main steps are as follows: (a) calculate the bootstrap current distribution using plasma parameters measured in the online transport analysis and (b) determine and apply ECCD as needed. For the current control to work properly and to avoid long relaxation times, the reaction time of the control loop must be less than the current skin time.


Physics of Plasmas | 2005

W7-AS: One step of the Wendelstein stellarator line

F. Wagner; S. Bäumel; J. Baldzuhn; N. Basse; R. Brakel; R. Burhenn; A. Dinklage; D. Dorst; H. Ehmler; M. Endler; Volker Erckmann; Y. Feng; F. Gadelmeier; J. Geiger; L. Giannone; P. Grigull; H.-J. Hartfuss; D. Hartmann; D. Hildebrandt; M. Hirsch; E. Holzhauer; Y. Igitkhanov; R. Jänicke; M. Kick; A. Kislyakov; J. Kisslinger; T. Klinger; S. Klose; J. Knauer; R. König

This paper is a summary of some of the major results from the Wendelstein 7-AS stellarator (W7-AS). W7-AS [G. Grieger et al., Phys. Fluids B 4, 2081 (1992)] has demonstrated the feasibility of modular coils and has pioneered the island divertor and the modeling of its three-dimensional characteristics with the EMC3/EIRENE code [Y. Feng, F. Sardei et al., Plasma Phys. Controlled Fusion 44, 611 (2002)]. It has extended the operational range to high density (4×1020m−3 at 2.5T) and high ⟨β⟩ (3.4% at 0.9T); it has demonstrated successfully the application of electron cyclotron resonance heating (ECRH) beyond cutoff via electron Bernstein wave heating, and it has utilized the toroidal variation of the magnetic field strength for ion cyclotron resonance frequency beach-wave heating. In preparation of W7-X [J. Nuhrenberg et al., Trans. Fusion Technol. 27, 71 (1995)], aspects of the optimization concept of the magnetic design have been successfully tested. W7-AS has accessed the H-mode, the first time in a “non-to...


Plasma Physics and Controlled Fusion | 2003

Experiments close to the beta-limit in W7-AS

A. Weller; J. Geiger; A. Werner; M. C. Zarnstorff; C. Nührenberg; E. Sallander; J. Baldzuhn; R. Brakel; R. Burhenn; A. Dinklage; E.D. Fredrickson; F. Gadelmeier; L. Giannone; P. Grigull; D. Hartmann; R. Jaenicke; S. Klose; J. Knauer; A. Könies; Ya. I. Kolesnichenko; H. P. Laqua; V. V. Lutsenko; K. McCormick; Donald Monticello; M Osakabe; E. Pasch; A. Reiman; N. Rust; D. A. Spong; F. Wagner

A major objective of the experimental program in the last phase of the W7-AS stellarator was to explore and demonstrate the high-β performance of advanced stellarators. MHD-quiescent discharges at low impurity radiation levels with volume averaged β-values of up to β = 3.4% have been achieved. A very important prerequisite was the attainment of the high density H-Mode (HDH) regime. This was made possible by the installation of extensive graphite plasma facing components designed for island divertor operation. The co-directed neutral beam injection provided increased absorbed heating power of up to 3.2 MW in high-β plasmas with B ≤ 1.25 T. The anticipated improved features concerning equilibrium and stability at high plasma β could be verified experimentally by the comparison of x-ray data with free boundary equilibrium calculations. The maximum β found in configurations with a rotational transform around is determined by the available heating power. No evidence of a stability limit has been found in the accessible configuration space, and the discharges are remarkably quiescent at maximum β, most likely due the increase of the magnetic well depth. An increase in low m/n MHD activity is typically observed during the transition towards high β. The beneficial stability properties of net-current-free configurations could be demonstrated by comparison with configurations where a significant inductive current drive was involved. Current driven instabilities such as tearing modes and soft disruptions can prevent access to β-values as high as in the currentless case. The experimental results indicate that optimized stellarators such as W7-X can be considered as a viable option for an attractive stellarator fusion reactor.


Review of Scientific Instruments | 2004

Integrating diagnostic data analysis for W7-AS using Bayesian graphical models

J. Svensson; A. Dinklage; J. Geiger; A. Werner; R. Fischer

Analysis of diagnostic data in fusion experiments is usually dealt with separately for each diagnostic, in spite of the existence of a large number of interdependencies between global physics parameters and measurements from different diagnostics. In this article, we demonstrate an integrated data analysis model, applied to the W7-AS stellarator, where diagnostic interdependencies have been modeled in a novel way by using so called Bayesian graphical models. A Thomson scattering system, interferometer, diamagnetic loop, and neutral particle analyzer are combined with an equilibrium reconstruction, forming together one single model for the determination of quantities such as density and temperature profiles, directly in magnetic coordinates. The magnetic coordinate transformation is itself inferred from the measurements. Influence of both statistical and systematic uncertainties on quantities from equilibrium calculations, such as position of flux surfaces, can therefore be readily estimated together with uncertainties of profile estimates. The model allows for modular addition of further diagnostics. A software architecture for such integrated analysis where possibly large number of diagnostic and theoretical codes need to be combined, will also be discussed.


Physics of Plasmas | 2009

A geometry interface for gyrokinetic microturbulence investigations in toroidal configurations

P. Xanthopoulos; W.A. Cooper; F. Jenko; Yu. Turkin; A. Runov; J. Geiger

The GENE/GIST code package is developed for the investigation of plasma microturbulence, suitable for both stellarator and tokamak configurations. The geometry module is able to process typical equilibrium files and create the interface for the gyrokinetic solver. The analytical description of the method for constructing the geometric elements is documented, together with several numerical evaluation tests. As a concrete application of this product, a cross-machine comparison of the anomalous ion heat diffusivity is presented.


Plasma Physics and Controlled Fusion | 2017

Performance and properties of the first plasmas of Wendelstein 7-X

T. Klinger; A. Alonso; S. Bozhenkov; R. Burhenn; A. Dinklage; G. Fuchert; J. Geiger; O. Grulke; A. Langenberg; M. Hirsch; G. Kocsis; J. Knauer; A. Krämer-Flecken; H. P. Laqua; Samuel A. Lazerson; Matt Landreman; H. Maaßberg; S. Marsen; M. Otte; N. Pablant; E. Pasch; K. Rahbarnia; T. Stange; T. Szepesi; H. Thomsen; P. Traverso; J. L. Velasco; T. Wauters; G. Weir; T. Windisch

The optimized, superconducting stellarator Wendelstein 7-X went into operation and delivered first measurement data after 15 years of construction and one year commissioning. Errors in the magnet assembly were confirmend to be small. Plasma operation was started with 5 MW electron cyclotron resonance heating (ECRH) power and five inboard limiters. Core plasma values of keV, keV at line-integrated densities were achieved, exceeding the original expectations by about a factor of two. Indications for a core-electron-root were found. The energy confinement times are in line with the international stellarator scaling, despite unfavourable wall conditions, i.e. large areas of metal surfaces and particle sources from the limiter close to the plasma volume. Well controlled shorter hydrogen discharges at higher power (4 MW ECRH power for 1 s) and longer discharges at lower power (0.7 MW ECRH power for 6 s) could be routinely established after proper wall conditioning. The fairly large set of diagnostic systems running in the end of the 10 weeks operation campaign provided first insights into expected and unexpected physics of optimized stellarators.


IEEE Transactions on Plasma Science | 2014

Design and Analysis of Divertor Scraper Elements for the W7-X Stellarator

J. Lore; T. Andreeva; J. Boscary; S. Bozhenkov; J. Geiger; J. H. Harris; Hauke Hoelbe; A. Lumsdaine; D. McGinnis; A. Peacock; Joseph Tipton

A set of new water-cooled divertor components is being designed for the Wendelstein 7-X stellarator to protect the edges of the primary plasma facing components during the bootstrap current evolution (~ 40 s). These new components, referred to as scraper elements (SEs), will intercept field lines and associated heat flux that would otherwise overload the main target edges in certain operational scenarios. The SEs are calculated to experience peak heat fluxes ~15-16 MW/m2 and will be constructed from carbon fiber reinforced composite monoblocks of a type that has been qualified for ITER. The heat flux distribution and magnitude is calculated from field line following in a 3-D magnetic field that includes the contribution from plasma currents. The heat flux calculations are coupled with an engineering design in an iterative process to generate SEs that meet the design criteria while reducing the geometric complexity of the elements.

Collaboration


Dive into the J. Geiger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge