Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Y. Turkin is active.

Publication


Featured researches published by Y. Turkin.


Physics of Plasmas | 2011

Neoclassical transport simulations for stellarators

Y. Turkin; C. D. Beidler; H. Maaßberg; S. Murakami; V. Tribaldos; A. Wakasa

The benchmarking of the thermal neoclassical transport coefficients is described using examples of the Large Helical Device (LHD) and TJ-II stellarators. The thermal coefficients are evaluated by energy convolution of the monoenergetic coefficients obtained by direct interpolation or neural network techniques from the databases precalculated by different codes. The temperature profiles are calculated by a predictive transport code from the energy balance equations with the ambipolar radial electric field estimated from a diffusion equation to guarantee a unique and smooth solution, although several solutions of the ambipolarity condition may exist when root-finding is invoked; the density profiles are fixed. The thermal transport coefficients as well as the ambipolar radial electric field are compared and very reasonable agreement is found for both configurations. Together with an additional W7-X case, these configurations represent very different degrees of neoclassical confinement at low collisionalities. The impact of the neoclassical optimization on the energy confinement time is evaluated and the confinement times for different devices predicted by transport modeling are compared with the standard scaling for stellarators. Finally, all configurations are scaled to the same volume for a direct comparison of the volume-averaged pressure and the neoclassical degree of optimization.


Physics of Plasmas | 2009

Momentum correction techniques for neoclassical transport in stellarators

H. Maaßberg; C. D. Beidler; Y. Turkin

In the traditional neoclassical ordering for stellarators, monoenergetic transport coefficients are evaluated using the simplified Lorentz form of the pitch-angle collision operator which violates momentum conservation. In this paper, the parallel momentum balance with radial parallel momentum transport and viscosity terms is analyzed, in particular, with respect to the radial electric field. Next, the impact of momentum conservation in the stellarator long-mean-free-path regime is estimated for the radial transport and the parallel electric conductivity. Two different momentum correction techniques are described based on monoenergetic transport coefficients calculated by the DKES code [W. I. van Rij and S. P. Hirshman, Phys. Fluids B 1, 563 (1989)]. The benchmarking of the parallel electric conductivity and of the bootstrap current is presented for a tokamak as well as for two W7-X stellarator configurations [G. Grieger et al., Phys. Fluids B 4, 2081 (1992)]. Finally, the impact of the momentum correctio...


Nuclear Fusion | 2015

Plans for the first plasma operation of Wendelstein 7-X

T. S. Pedersen; T. Andreeva; H.-S. Bosch; S. Bozhenkov; F. Effenberg; M. Endler; Y. Feng; D.A. Gates; J. Geiger; D. Hartmann; H. Hölbe; M. Jakubowski; R. König; H. P. Laqua; Samuel Lazerson; M. Otte; M. Preynas; O. Schmitz; T. Stange; Y. Turkin

Wendelstein 7-X (W7-X) is currently under commissioning in preparation for its initial plasma operation phase, operation phase 1.1 (OP1.1). This first phase serves primarily to provide an integral commissioning of all major systems needed for plasma operation, as well as systems, such as diagnostics, that need plasma operation to verify their foreseen functions. In OP1.1, W7-X will have a reduced set of in-vessel components. In particular, five graphite limiter stripes replace the later foreseen divertor. This paper describes the expected machine capabilities in OP1.1, as well as a selection of physics topics that can be addressed in OP1.1, despite the simplified configuration and the reduced machine capabilities. Physics topics include the verification and adjustment of the magnetic topology, the testing of the foreseen plasma start-up scenarios and the feed-forward control of plasma density and temperature evolution, as well as more advanced topics such as scrape-off layer (SOL) studies at short connection lengths and transport studies. Plasma operation in OP1.1 will primarily be performed in helium, with a hydrogen plasma phase at the end.


Computer Physics Communications | 2014

Ray-tracing code TRAVIS for ECR heating, EC current drive and ECE diagnostic

N. B. Marushchenko; Y. Turkin; H. Maassberg

A description of the recently developed ray-tracing code TRAVIS is given together with the theoretical background, results of benchmarking and examples of application. The code is written for electron cyclotron studies with emphasis on heating, current drive and ECE diagnostic. The code works with an arbitrary 3D magnetic equilibrium being applicable for both stellarators and tokamaks. The equations for ray tracing are taken in the weakly relativistic approach, i.e. with thermal eects taken into account, while the absorption, current drive and emissivity are calculated in the fully relativistic approach. For the calculation of ECCD, an adjoint technique with parallel momentum conservation is applied. The code is controlled through a specially designed graphical user interface, which allows the preparation of the input parameters and viewing the results in convenient (2D and 3D) form.


Nuclear Fusion | 2014

Fast particle confinement with optimized coil currents in the W7-X stellarator

M. Drevlak; J. Geiger; P. Helander; Y. Turkin

One of the principal goals of the W7-X stellarator is to demonstrate good confinement of energetic ions at finite β. This confinement, however, is sensitive to the magnetic field configuration and is thus vulnerable to design modifications of the coil geometry. The collisionless drift orbit losses for 60 keV protons in W7-X are studied using the ANTS code. Particles in this energy range will be produced by the neutral beam injection (NBI) system being constructed for W7-X, and are particularly important because protons at this energy accurately mimick the behaviour of 3.5 MeV α-particles in a HELIAS reactor.To investigate the possibility of improved fast particle confinement, several approaches to adjust the coil currents (5 main field coil currents +2 auxiliary coil currents) were explored. These strategies include simple rules of thumb as well as computational optimization of various properties of the magnetic field.It is shown that significant improvement of collisionless fast particle confinement can be achieved in W7-X for particle populations similar to α particles produced in fusion reactions. Nevertheless, the experimental goal of demonstrating confinement improvement with rising plasma pressure using an NBI-generated population appears to be difficult based on optimization of the coil currents only. The principal reason for this difficulty is that the NBI deposition profile is broader than the region of good fast-ion confinement around the magnetic axis.


Nuclear Fusion | 2003

Experimental check of neoclassical predictions for the radial electric field in a stellarator

H. Ehmler; Y. Turkin; C. D. Beidler; H. Maaßberg; A. Dinklage; J. Baldzuhn; T. Klinger; W As Team

Investigations of the radial electric field have been carried out at the stellarator Wendelstein 7-AS using charge-exchange spectroscopy with high spatial resolution based on the high-energy Li beam diagnostic (Li-CXS). To evaluate the electric field, the radial force balance equation is used together with the measured profiles of poloidal velocity, density and the temperature of carbon impurities. Results of experiments are compared with predictions of the neoclassical theory. We also use a simple analytic approximation, in which the radial electric field is proportional to the pressure gradient of H+ ions of the bulk plasma. This approximation agrees reasonably well with both the measurements and the accurate neoclassical calculations and, therefore, can be used for a fast estimation of the radial electric field.


Nuclear Fusion | 2015

Optimization of the high harmonic ECRH scenario to extend a heating plasma parameter range in LHD

T. Shimozuma; H. Igami; S. Kubo; Y. Yoshimura; H. Takahashi; M. Osakabe; T. Mutoh; M. Nishiura; H. Idei; K. Nagasaki; N. B. Marushchenko; Y. Turkin

Effectiveness of high harmonic electron cyclotron resonance heating (ECRH) was investigated by both experiments and ray-trace analyses. The conditions of both the EC wave injection and the magnetic field configuration were optimized in the large helical device. In the case of the second harmonic ordinary mode injection with a frequency of 77 GHz and with the optimized injection angle, about 30–40% absorption could be kept beyond the cut-off density of the second harmonic extraordinary (X2) mode, which is 3.7 × 1019 m−3. In the third harmonic X (X3) mode heating experiment, the dependence of the absorption rate on plasma density and temperature of the target plasma was precisely investigated and compared with the ray-trace (TRAVIS code) calculation. The calculation results of the absorption rate show fairly good agreement with the experimentally obtained ones on the plasma-parameter dependences. The maximum absorption rate in the X3 heating experiment attained approximately 40% around the electron density of 1.5 × 1019 m−3 and the electron temperature of 1.2 keV. Superposed stepwise injection from three gyrotrons with a total of 3 MW increased the central electron temperature to about 3.5 times of the initial target plasma temperature of 0.6 keV. This shows that the temperature increase improves the absorption rate of the subsequent injection.


Physics of Plasmas | 2014

Extension of high Te regime with upgraded electron cyclotron resonance heating system in the Large Helical Device

Hiromi Takahashi; T. Shimozuma; Shin Kubo; Y. Yoshimura; H. Igami; S. Ito; S. Kobayashi; Y. Mizuno; K. Okada; T. Mutoh; K. Nagaoka; S. Murakami; Masaki Osakabe; I. Yamada; Haruhisa Nakano; M. Yokoyama; Takeshi Ido; A. Shimizu; R. Seki; K. Ida; M. Yoshinuma; T. Kariya; Ryutaro Minami; T. Imai; N. B. Marushchenko; Y. Turkin

Enhancement of the output power per gyrotron has been planned in the Large Helical Device (LHD). Three 77-GHz gyrotrons with an output power of more than 1 MW have been operated. In addition, a high power gyrotron with the frequency of 154 GHz (1 MW/5 s, 0.5 MW/CW) was newly installed in 2012, and the total injection power of Electron cyclotron resonance heating (ECRH) reached 4.6 MW. The operational regime of ECRH plasma on the LHD has been extended due to the upgraded ECRH system such as the central electron temperature of 13.5 keV with the line-averaged electron density ne_fir = 1 × 1019 m−3. The electron thermal confinement clearly improved inside the electron internal transport barrier, and the electron thermal diffusivity reached neoclassical level. The global energy confinement time increased with increase of ne_fir. The plasma stored energy of 530 kJ with ne_fir = 3.2 × 1019 m−3, which is 1.7 times larger than the previous record in the ECRH plasma in the LHD, has been successfully achieved.


Physics of Plasmas | 2018

Core radial electric field and transport in Wendelstein 7-X plasmas

N. Pablant; A. Langenberg; A. Alonso; C. D. Beidler; M. Bitter; S. Bozhenkov; R. Burhenn; M. Beurskens; L.F. Delgado-Aparicio; A. Dinklage; G. Fuchert; D.A. Gates; J. Geiger; K. W. Hill; U. Höfel; M. Hirsch; J. Knauer; A. Krämer-Flecken; Matt Landreman; Samuel A. Lazerson; H. Maaßberg; O. Marchuk; S. Massidda; G.H. Neilson; E. Pasch; S. Satake; J. Svennson; P. Traverso; Y. Turkin; P. Valson

The results from the investigation of neoclassical core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥∼ 5 km/s (ΔEr ∼ 12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. The...


Physics of Plasmas | 2017

Key results from the first plasma operation phase and outlook for future performance in Wendelstein 7-X

T. S. Pedersen; A. Dinklage; Y. Turkin; R. C. Wolf; S. Bozhenkov; J. Geiger; G. Fuchert; Hans-Stephan Bosch; K. Rahbarnia; H. Thomsen; U. Neuner; T. Klinger; A. Langenberg; Humberto Trimino Mora; P. Kornejew; J. Knauer; M. Hirsch; N. Pablant

The first physics operation phase on the stellarator experiment Wendelstein 7-X was successfully completed in March 2016 after about 10 weeks of operation. Experiments in this phase were conducted with five graphite limiters as the primary plasma-facing components. Overall, the results were beyond the expectations published shortly before the start of operation [Sunn Pedersen et al., Nucl. Fusion 55, 126001 (2015)] both with respect to parameters reached and with respect to physics themes addressed. We report here on some of the most important plasma experiments that were conducted. The importance of electric fields on global confinement will be discussed, and the obtained results will be compared and contrasted with results from other devices, quantified in terms of the fusion triple product. Expected values for the triple product in future operation phases will also be described and put into a broader fusion perspective.

Collaboration


Dive into the Y. Turkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge