Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.H. Ok is active.

Publication


Featured researches published by J.H. Ok.


Materials Science Forum | 2006

An Analysis on the Forming Load of AA 2024 Aluminium Alloy in Combined and Sequence Operation Process

Beong Bok Hwang; Jae Hyun Shim; Jung Min Seo; H.S. Koo; J.H. Ok; Y.H. Lee; G.M. Lee; K.H. Min; Hyoung Jin Choi

This paper is concerned with the analysis of the forming load characteristics of a forward-backward can extrusion in both combined and sequence operation. A commercially available finite element program, which is coded in the rigid-plastic finite element method, has been employed to investigate the forming load characteristics. AA 2024 aluminum alloy is selected as a model material. The analysis in the present study is extended to the selection of press frame capacity for producing efficiently final product at low cost. The possible extrusion processes to shape a forward-backward can component with different outer diameters are categorized to estimate quantitatively the force requirement for forming forward-backward can part, forming energy, and maximum pressure exerted on the die-material interfaces, respectively. The categorized processes are composed of combined and/or some basic extrusion processes such as sequence operation. Based on the simulation results about forming load characteristics, the frame capacity of a mechanical press of crank-drive type suitable for a selected process could be determined along with securing the load capacity and with considering productivity. In addition, it is suggested that different load capacities be selected for different dimensions of a part such as wall thickness in forward direction and etc. It is concluded quantitatively from the simulation results that the combined operation is superior to sequence operation in terms of relatively low forming load and thus it leads to low cost for forming equipments. However, it is also known from the simulation results that the precise control of dimensional accuracy is not so easy in combined operation. The results in this paper could be a good reference for analysis of forming process for complex parts and selection of proper frame capacity of a mechanical press to achieve low production cost and thus high productivity.


Materials Science Forum | 2006

An Analysis on the Surface Expansion of Aluminium Alloys in Backward Can Extrusion Process

J.H. Ok; Beong Bok Hwang

This paper is concerned with the analysis on the surface expansion of AA 2024 and AA 1100 aluminum alloys in backward extrusion process. Due to heavy surface expansion appeared usually in the backward can extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the surface expansion is analyzed especially under various process conditions. The main goal of this study is to investigate the influence of degree of reduction in height, geometries of punch nose, friction and hardening characteristics of different aluminum alloys on the material flow and thus on the surface expansion on the working material. Two different materials are selected for investigation as model materials and they are AA 2024 and AA 1100 aluminum alloys. The geometrical parameters employed in analysis include punch corner radius and punch face angle. The geometry of punch follows basically the recommendation of ICFG and some variations of punch geometry are adopted to obtain quantitative information on the effect of geometrical parameters on material flow. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward can extrusion process under different geometrical, material, and interface conditions. The simulation results are summarized in terms of surface expansion at different reduction in height, deformation patterns including pressure distributions along the interface between workpiece and punch, comparison of surface expansion between two model materials, geometrical and interfacial parametric effects on surface expansion, and load-stroke relationships. It has been concluded from the present study that the geometrical condition of punch is the most significant factor among the parameters employed in this study. It is also known from the simulation results that the difference in surface expansion according to different material properties is not more or less significant.


Materials Science Forum | 2006

The Forming Characteristics of AA 2024 Aluminium Alloy in Radial Extrusion Process Combined with Backward Extrusion

Dong Hwan Jang; J.H. Ok; G.M. Lee; Beong Bok Hwang

Numerical analysis of radial extrusion process combined with backward extrusion has been performed to investigate the forming characteristics of an aluminum alloy in a combined extrusion process. Various variables such as gap size, die corner radius and frictional conditions are adopted as design or process parameters for analysis in this paper. The main investigation is focused on the analysis of forming characteristics of AA 2024 aluminum alloy in terms of material flow into backward can and radial flange sections. Due to various die geometries and process conditions such as frictional conditions, the material flow into a can and flange shows different patterns during the combined extrusion process and its characteristics are well summarized quantitatively in this paper in terms of forming load, volume ratio etc. Extensive simulation work leads to quantitative relationships between process conditions and the forming characteristics such as volume ratio of flange to can and the size of can and flange in terms of the can height extruded backward. It is easily seen from the simulation results that the volume ratio, which is defined as the ratio of flange volume to can volume, increases as the gap size and/or die corner radius increase. However, it is interesting to note that the frictional condition has little influence on the forming load and the deformation patterns. Usually, the frictional condition is a greatest process variable in normal forging operation. It might be believed from the simulation results that the frictional conditions are not a major process parameter in case of combined extrusion processes. It is also found that the can size, which is defined as the height of billet after forming, turns out to be even smaller than that of initial billet under a certain condition of die geometry.


Materials Science Forum | 2005

A Process Sequence Design of Multi-Step Cold Extrusion Process for Hollow Parts

Jae Hyun Shim; J.H. Ok; Hyoung Jin Choi; H.S. Koo; Beong Bok Hwang

Conventional multi-step extrusion processes with solid billet are examined by the rigid-plastic finite element method in order to provide criteria for new process sequence for hollow parts. Two examples are taken for the analyses such as the current three-stage cold extrusion process for a hollow flange part and five-stage process for manufacturing an axle housing. Based on the results of simulation of the current three-stage and five-stage manufacturing processes, new design strategy for improving the process sequences is developed simply by replacing the initial billet from solid to hollow one. The developed new process sequences are applied for simulation by FEM and they are compared with the existing processes to confirm the usefulness of new process sequences with hollow initial billets. The results of simulation show that the newly proposed process sequences with hollow billet instead of solid one are more economical way to manufacture required parts, respectively.


Key Engineering Materials | 2007

A Study on the Pressure Distribution along the Powder-Die Interfaces in Powdered Metal Compaction Process

H.S. Koo; V.R. Jayasekera; K.H. Min; Jung Min Seo; Dong Hwan Jang; J.H. Ok; Beong Bok Hwang

This paper is concerned with the pressure distribution along the die-powder interface in long parts. The pressure exerted on the interface at various points on the moving and stationary punch, and also on the sidewall of container was investigated by the finite element method. A plasticity theory describing asymmetric behavior of powdered metals in tension and compression was briefly summarized. The yield criterion applied to the sintered powdered metals had been modified for describing this asymmetric behavior. The material properties of copper powders under compaction were also briefly described for the completeness of the paper. The copper powders were selected as a model material in the present study. The main purpose of this study is to investigate the pressure distribution along the interface of tooling quantitatively by the finite element method so that the results could be applied usefully to the design of tooling, especially container design for powdered metal compaction. Geometrical condition for analysis was confined to the Class II components which is very long parts without steps. It was concluded from the simulation results that the pressure exerted on the moving punch increases sharply near the outer circumference of punch and the pressure on the sidewall decreases at a distance from moving punch to fixed punch. It was also seen from the simulation that the pressure on the stationary punch is not significantly built up and decreases toward outer periphery. These trends were seen amplified with severe frictional conditions imposed on the tooling and powder interface.


Key Engineering Materials | 2007

A Numerical and Experimental Analysis on the Forming Limit of AA 3105 Aluminum Alloy in Radial Extrusion Process

K.H. Min; Byung-Chul Ko; B.S. Ham; J.H. Ok; Beong Bok Hwang; H.S. Koo; Jung Min Seo

In this paper, the forming limit of flange in radial extrusion process was analyzed by the rigid-plastic finite element method. The selected model material for simulation and experiments was AA 3105 aluminum alloy. The predictions from simulation were made in terms of axial and circumferential strains. Experiments also have been conducted to compare with the simulation results with regards to deformation pattern. Furthermore, the deformation pattern in forming of flange section was closely investigated and categorized in three cases such as sticking, separating and cracking. The analysis in this paper is focused on the transient extrusion process of material flow into the gap in radial direction for different gap heights and die corner radii. The results of present study were summarized in terms of evolution of surface strains in axial and circumferential directions measured from the finite element meshes located in the region where surface cracking occurred in experiments. The forming limit line was drawn in the relationship of circumferential and axial strain. It was concluded from this study that the forming limit line is influenced mainly by circumferential strain on free surface of flange. It was also predicted that ductile fracture on flange surface is likely to occur in the middle of flange gap under the condition of sticking deformation and near bottom of flange gap under the condition of separating deformation, respectively. The forming limit of flange in terms of flange diameter was expected about 2.5do, which is 2.5 times the diameter of original billet.


Materials Science Forum | 2006

Numerical Analysis on the Extruded Volume and Length Ratios of Backward Tube to Forward Rod in Combined Extrusion Processes

B.S. Ham; J.H. Ok; Jung Min Seo; Beong Bok Hwang; K.H. Min; H.S. Koo

This paper is concerned with forward rod extrusion combined simultaneously with backward tube extrusion process in both steady and transient states. The analysis has been conducted in numerical manner by employing a rigid-plastic finite element method. AA 2024 aluminum alloy was selected as a model material for analysis. Among many process parameters, major design factors chosen for analysis include frictional condition, thickness of tube in backward direction, punch corner radius, and die corner radius. The main goal of this study is to investigate the material flow characteristics in combined extrusion process, i.e. forward rod extrusion combined simultaneously with backward tube extrusion process. Simulation results have been summarized in term of relationships between process parameters and extruded length and volume ratios, and between process parameters and force requirements, respectively. The extruded length ratio is defined as the ratio of tube length extruded in backward direction to rod length extruded in forward direction, and the volume ratio as that of extruded volume in backward direction to that in forward direction, respectively. It has been revealed from the simulation results that material flow into both backward and forward directions are mostly influenced by the backward tube thickness, and other process parameters such as die corner radius etc. have little influence on the volume ratio particularly in steady state of combined extrusion process. The pressure distributions along the tool-workpiece interface have been also analyzed such that the pressure exerted on die is not so significant in this particular process such as combined operation process. Comparisons between multi-stage forming process in sequence operation and one stage combined operation have been also made in terms of forming load and pressure exerted on die. The simulation results shows that the combined extrusion process has the greatest advantage of lower forming load comparing to that in sequence operation.


Materials Science Forum | 2005

A Study on Material Flow in Combined Extrusion Process

J.H. Ok; Beong Bok Hwang; Hyoung Jin Choi; B.S. Ham; Sun Keun Hwang

This paper deals with an analysis of material flow in an extrusion process with a divide flow. The billet material flows easily into the corners of the die cavity and/or the material flow is controlled by the help of the ratio in reduction area, thikness ratio of backward can thickness to forward can thickness. So the influences of this tool geometry and process condition on balanced material flow in a combined forward and backward can extrusion process are explained. The FEM simulation has been conducted in order to investigate the effect of process parameters such as thickness ratio on the material flow. Deformation pattern and flow characteristics were examined in terms of design parameters such as extruded length ratio etc. Based on the simulation results, die pressure exerted on the die-workpiece interface is calculated and anaylsied for safe tooling. Therefore the numerical simulation works provide a combined extrusion process of stable cold forging process planning to avoid the severe damages on the tool.


Materials Science Forum | 2005

A Numerical Analysis on the Dissimilar Channel Angular Pressing Process by Rolling

Moo Young Huh; Hyoung Jin Choi; J.H. Ok; Beong Bok Hwang; Bok Choon Kang

The dissimilar channel angular pressing (DCAP) process by rolling was numerically modeled and analyzed by the rigid-plastic two-dimensional finite element method in order to optimize the strain state of the DCAP process. Three distinct deformation mechanics during DCAP by rolling includes rolling, bending, and shearing. AA 1100 aluminum alloy was selected as a model material for the analysis of DCAP process. Difference in the friction conditions between the upper and lower roll surfaces led to large variation of shear strain component throughout the thickness of sample. Strain accompanying bending turned out to be negligible because of a large radius of curvature by relatively large roll diameter. The concentrated shear deformation was monitored at the corner of the DCAP-channel where the abrupt change in the direction of material flow occurred. The strain state at the upper and lower surfaces was observed to vary strongly from that of the center layer of the sheet.


Materials Science Forum | 2006

The Influence of Die Geometry on the Radial Extrusion Processes with AA 6063 Aluminium Alloy

Dong Hwan Jang; J.H. Ok; H.S. Koo; G.M. Lee; Beong Bok Hwang

The rigid-plastic finite element method has been applied to three variants of radial extrusion processes to investigate the influence of die geometry on the material flow into the flange gap. Case I involves forcing a cylindrical billet against a flat die, which is a single action pressing process. In case II, another single action pressing process, the upper punch forces a billet against a stationary punch recessed in the lower die. Both the upper and lower punches move together in Case III toward the center of billet at the same speed with a double action tool. Major process parameters are identified as the relative gap height and the die corner radius in constant relative deformation. The relative gap height is defined as the ratio of gap height to billet diameter. Extensive simulation work for various combinations of process parameter value has been performed and then the main characteristics of the deformation patterns of each case are observed to define the terms which represent the forming characteristics of the flange in radial extrusion processes in terms of separation height, asymmetric ratio of height, and asymmetric ratio of angle, respectively. The effect of major process parameters on the material flow into the flange gap has been also analyzed in terms of flange radius and flange angle. The effect of frictional condition on the separation height has been also analyzed to investigate the edge separation of flange from the flat die. AA 6063 aluminum alloy is selected as a model material throughout the analysis. Simple comparison between AA 6063 and AISI 1006 steel has been also made to investigate the effect of material selection on the deformation pattern, especially in terms of separation height in Case I and asymmetry in Case II, respectively.

Collaboration


Dive into the J.H. Ok's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge