J. Hare
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Hare.
Review of Scientific Instruments | 2014
G. F. Swadling; Sergey V. Lebedev; G. Hall; S. Patankar; N. H. Stewart; R. A. Smith; A. J. Harvey-Thompson; G. Burdiak; P. de Grouchy; J. Skidmore; L. Suttle; F. Suzuki-Vidal; S. N. Bland; Kuan Hiang Kwek; L. Pickworth; Matthew R. Bennett; J. Hare; W. Rozmus; J. Yuan
A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.
Optics Express | 2011
Yury Alaverdyan; Nick Vamivakas; Joshua Barnes; Claire Lebouteiller; J. Hare; Mete Atatüre
We show that the positioning of a nanometer length scale dielectric object, such as a diamond nanocrystal, in the vicinity of a gold bowtie nanoantenna can be used to tune the plasmonic mode spectrum on the order of a linewidth. We further show that the intrinsic luminescence of gold enhanced in the presence of nanometer-scale roughness couples efficiently to the plasmon mode and carries the same polarization anisotropy. Our findings have direct implications for cavity quantum electrodynamics related applications of hybrid antenna-emitter complexes.
Physics of Plasmas | 2013
R. Majeski; T. Abrams; D.P. Boyle; E. Granstedt; J. Hare; C. M. Jacobson; R. Kaita; Thomas Kozub; B. LeBlanc; D. P. Lundberg; M. Lucia; Enrique Merino; J.C. Schmitt; D.P. Stotler; T. M. Biewer; J.M. Canik; T.K. Gray; R. Maingi; A. G. McLean; S. Kubota; W. A. Peebles; P. Beiersdorfer; J. H. T. Clementson; K. Tritz
The Lithium Tokamak eXperiment is a small, low aspect ratio tokamak [Majeski et al., Nucl. Fusion 49, 055014 (2009)], which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350 °C. Several gas fueling systems, including supersonic gas injection and molecular cluster injection, have been studied and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 ms. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 ms. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak—thin, evaporated, liquefied coatings of lithium—does not produce an adequately clean surface.
Physics of Plasmas | 2014
S. V. Lebedev; L. Suttle; G. F. Swadling; M. Bennett; S. N. Bland; G. Burdiak; D. Burgess; J. P. Chittenden; A. Ciardi; Adam Clemens; P. de Grouchy; G. Hall; J. Hare; N. Kalmoni; N. Niasse; S. Patankar; L. Sheng; R. A. Smith; F. Suzuki-Vidal; J. Yuan; Adam Frank; Eric G. Blackman; R. P. Drake
A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (ReM ∼ 50, MS ∼ 5, MA ∼ 8, Vflow ≈ 100 km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface of a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of ∼c/ωpi from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow.
Physics of Plasmas | 2017
J. Hare; S. V. Lebedev; L. Suttle; Nuno Loureiro; A. Ciardi; G. Burdiak; J. P. Chittenden; T. Clayson; S. J. Eardley; C. Garcia; J. W. D. Halliday; N. Niasse; Timothy Robinson; R. A. Smith; N. H. Stuart; Francisco Suzuki-Vidal; G. F. Swadling; J. Ma; Jiawei Wu
We describe magnetic reconnection experiments using a new, pulsed-power driven experimental platform in which the inflows are super-sonic but sub-Alfvenic. The intrinsically magnetised plasma flows are long lasting, producing a well-defined reconnection layer that persists over many hydrodynamic time scales. The layer is diagnosed using a suite of high resolution laser based diagnostics, which provide measurements of the electron density, reconnecting magnetic field, inflow and outflow velocities, and the electron and ion temperatures. Using these measurements, we observe a balance between the power flow into and out of the layer, and we find that the heating rates for the electrons and ions are significantly in excess of the classical predictions. The formation of plasmoids is observed in laser interferometry and optical self-emission, and the magnetic O-point structure of these plasmoids is confirmed using magnetic probes.
Physical Review Letters | 2017
J. Hare; L. Suttle; S. V. Lebedev; N. F. Loureiro; A. Ciardi; G. Burdiak; J. P. Chittenden; T. Clayson; C. Garcia; N. Niasse; Timothy Robinson; R. A. Smith; N. H. Stuart; Francisco Suzuki-Vidal; G. F. Swadling; J. Ma; Jiawei Wu; Q. Yang
We present a detailed study of magnetic reconnection in a quasi-two-dimensional pulsed-power driven laboratory experiment. Oppositely directed magnetic fields (B=3 T), advected by supersonic, sub-Alfvénic carbon plasma flows (V_{in}=50 km/s), are brought together and mutually annihilate inside a thin current layer (δ=0.6 mm). Temporally and spatially resolved optical diagnostics, including interferometry, Faraday rotation imaging, and Thomson scattering, allow us to determine the structure and dynamics of this layer, the nature of the inflows and outflows, and the detailed energy partition during the reconnection process. We measure high electron and ion temperatures (T_{e}=100 eV, T_{i}=600 eV), far in excess of what can be attributed to classical (Spitzer) resistive and viscous dissipation. We observe the repeated formation and ejection of plasmoids, consistent with the predictions from semicollisional plasmoid theory.
Physical Review Letters | 2016
L. Suttle; J. Hare; S. V. Lebedev; G. F. Swadling; G. Burdiak; A. Ciardi; J. P. Chittenden; Nuno Loureiro; N. Niasse; Francisco Suzuki-Vidal; Jian Wu; Q. Yang; T. Clayson; Adam Frank; Timothy Robinson; R. A. Smith; N. H. Stuart
We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.
Journal of Plasma Physics | 2015
G. Burdiak; S. V. Lebedev; Francisco Suzuki-Vidal; G. F. Swadling; S. N. Bland; N. Niasse; L. Suttle; M. Bennet; J. Hare; Marcus Weinwurm; R. Rodriguez; J.M. Gil; G. Espinosa
A gas-filled cylindrical liner z-pinch configuration has been used to drive convergent radiative shock waves into different gases at velocities of 20–50 km s −1 . On application of the 1.4 MA, 240 ns rise-time current pulse produced by the Magpie generator at Imperial College London, a series of cylindrically convergent shock waves are sequentially launched into the gas-fill from the inner wall of the liner. This occurs without any bulk motion of the liner wall itself. The timing and trajectories of the shocks are used as a diagnostic tool for understanding the response of the liner z-pinch wall to a large pulsed current. This analysis provides useful data on the liner resistivity, and a means to test equation of state (EOS) and material strength models within MHD simulation codes. In addition to providing information on liner response, the convergent shocks are interesting to study in their own right. The shocks are strong enough for radiation transport to influence the shock wave structure. In particular, we see evidence for both radiative preheating of material ahead of the shockwaves and radiative cooling instabilities in the shocked gas. Some preliminary results from initial gas-filled liner experiments with an applied axial magnetic field are also discussed.
Physics of Plasmas | 2016
G. F. Swadling; S. V. Lebedev; G. Hall; Francisco Suzuki-Vidal; G. Burdiak; L. Pickworth; P. de Grouchy; J. Skidmore; E. Khoory; L. Suttle; M. Bennett; J. Hare; T. Clayson; S. N. Bland; R. A. Smith; N. H. Stuart; S. Patankar; Timothy Robinson; A. J. Harvey-Thompson; W. Rozmus; J. Yuan; L. Sheng
Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotationimaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imagingmeasurements are reviewed, then more recent Thomson scattering measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imagingFaraday rotationdiagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faradaymeasurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.
Physics of Plasmas | 2018
J. Hare; L. Suttle; S. V. Lebedev; Nuno Loureiro; A. Ciardi; J. P. Chittenden; T. Clayson; S. J. Eardley; C. Garcia; J. W. D. Halliday; Timothy Robinson; Roland Smith; N. H. Stuart; F. Suzuki-Vidal; E. Tubman
We describe a versatile pulsed-power driven platform for magnetic reconnection experiments, based on exploding wire arrays driven in parallel [Suttle, L. G. et al. PRL, 116, 225001]. This platform produces inherently magnetised plasma flows for the duration of the generator current pulse (250 ns), resulting in a long-lasting reconnection layer. The layer exists for long enough to allow evolution of complex processes such as plasmoid formation and movement to be diagnosed by a suite of high spatial and temporal resolution laser-based diagnostics. We can access a wide range of magnetic reconnection regimes by changing the wire material or moving the electrodes inside the wire arrays. We present results with aluminium and carbon wires, in which the parameters of the inflows and the layer which forms are significantly different. By moving the electrodes inside the wire arrays, we change how strongly the inflows are driven. This enables us to study both symmetric reconnection in a range of different regimes, and asymmetric reconnection.