Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J Henkel is active.

Publication


Featured researches published by J Henkel.


Hepatology | 2009

Aggravation by prostaglandin E2 of interleukin-6-dependent insulin resistance in hepatocytes.

J Henkel; Frank Neuschäfer-Rube; Andrea Pathe-Neuschäfer-Rube; Gerhard Püschel

Hepatic insulin resistance is a major contributor to fasting hyperglycemia in patients with metabolic syndrome and type 2 diabetes. Circumstantial evidence suggests that cyclooxygenase products in addition to cytokines might contribute to insulin resistance. However, direct evidence for a role of prostaglandins in the development of hepatic insulin resistance is lacking. Therefore, the impact of prostaglandin E2 (PGE2) alone and in combination with interleukin‐6 (IL‐6) on insulin signaling was studied in primary hepatocyte cultures. Rat hepatocytes were incubated with IL‐6 and/or PGE2 and subsequently with insulin. Glycogen synthesis was monitored by radiochemical analysis; the activation state of proteins of the insulin receptor signal chain was analyzed by western blot with phosphospecific antibodies. In hepatocytes, insulin‐stimulated glycogen synthesis and insulin‐dependent phosphorylation of Akt‐kinase were attenuated synergistically by prior incubation with IL‐6 and/or PGE2 while insulin receptor autophosphorylation was barely affected. IL‐6 but not PGE2 induced suppressors of cytokine signaling (SOCS3). PGE2 but not IL‐6 activated extracellular signal‐regulated kinase 1/2 (ERK1/2) persistently. Inhibition of ERK1/2 activation by PD98059 abolished the PGE2‐dependent but not the IL‐6‐dependent attenuation of insulin signaling. In HepG2 cells expressing a recombinant EP3‐receptor, PGE2 pre‐incubation activated ERK1/2, caused a serine phosphorylation of insulin receptor substrate 1 (IRS1), and reduced the insulin‐dependent Akt‐phosphorylation. Conclusion: PGE2 might contribute to hepatic insulin resistance via an EP3‐receptor‐dependent ERK1/2 activation resulting in a serine phosphorylation of insulin receptor substrate, thereby preventing an insulin‐dependent activation of Akt and glycogen synthesis. Since different molecular mechanisms appear to be employed, PGE2 may synergize with IL‐6, which interrupted the insulin receptor signal chain, principally by an induction of SOCS, namely SOCS3. (HEPATOLOGY 2009.)


Molecular Medicine | 2012

Female mice are more susceptible to nonalcoholic fatty liver disease sex-specific regulation of the hepatic AMP-Activated protein Kinase-Plasminogen activator inhibitor 1 cascade, but not the hepatic endotoxin response

Astrid Spruss; J Henkel; Giridhar Kanuri; Daniela Blank; Gerhard Püschel; Stephan C. Bischoff; Ina Bergheim

As significant differences between sexes were found in the susceptibility to alcoholic liver disease in human and animal models, it was the aim of the present study to investigate whether female mice also are more susceptible to the development of non-alcoholic fatty liver disease (NAFLD). Male and female C57BL/6J mice were fed either water or 30% fructose solution ad libitum for 16 wks. Liver damage was evaluated by histological scoring. Portal endotoxin levels and markers of Kupffer cell activation and insulin resistance, plasminogen activator inhibitor 1 (PAI-1) and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) were measured in the liver. Adiponectin mRNA expression was determined in adipose tissue. Hepatic steatosis was almost similar between male and female mice; however, inflammation was markedly more pronounced in livers of female mice. Portal endotoxin levels, hepatic levels of myeloid differentiation primary response gene (88) (MyD88) protein and of 4-hydroxynonenal protein adducts were elevated in animals with NAFLD regardless of sex. Expression of insulin receptor substrate 1 and 2 was decreased to a similar extent in livers of male and female mice with NAFLD. The less pronounced susceptibility to liver damage in male mice was associated with a superinduction of hepatic pAMPK in these mice whereas, in livers of female mice with NAFLD, PAI-1 was markedly induced. Expression of adiponectin in visceral fat was significantly lower in female mice with NAFLD but unchanged in male mice compared with respective controls. In conclusion, our data suggest that the sex-specific differences in the susceptibility to NAFLD are associated with differences in the regulation of the adiponectin-AMPK-PAI-1 signaling cascade.


Laboratory Investigation | 2011

Oncostatin M produced in Kupffer cells in response to PGE2: possible contributor to hepatic insulin resistance and steatosis

J Henkel; Daniela Gärtner; C Dorn; Claus Hellerbrand; Nancy Schanze; Sheila R Elz; Gerhard Püschel

Hepatic insulin resistance is a major contributor to hyperglycemia in metabolic syndrome and type II diabetes. It is caused in part by the low-grade inflammation that accompanies both diseases, leading to elevated local and circulating levels of cytokines and cyclooxygenase (COX) products such as prostaglandin E2 (PGE2). In a recent study, PGE2 produced in Kupffer cells attenuated insulin-dependent glucose utilization by interrupting the intracellular signal chain downstream of the insulin receptor in hepatocytes. In addition to directly affecting insulin signaling in hepatocytes, PGE2 in the liver might affect insulin resistance by modulating cytokine production in non-parenchymal cells. In accordance with this hypothesis, PGE2 stimulated oncostatin M (OSM) production by Kupffer cells. OSM in turn attenuated insulin-dependent Akt activation and, as a downstream target, glucokinase induction in hepatocytes, most likely by inducing suppressor of cytokine signaling 3 (SOCS3). In addition, it inhibited the expression of key enzymes of hepatic lipid metabolism. COX-2 and OSM mRNA were induced early in the course of the development of non-alcoholic steatohepatitis (NASH) in mice. Thus, induction of OSM production in Kupffer cells by an autocrine PGE2-dependent feed-forward loop may be an additional, thus far unrecognized, mechanism contributing to hepatic insulin resistance and the development of NASH.


Diabetologia | 2014

Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P2 receptor subtype

Susann Fayyaz; J Henkel; Lukasz Japtok; Stephanie Krämer; Georg Damm; Daniel Seehofer; Gerhard Püschel; Burkhard Kleuser

Aims/hypothesisEnhanced plasma levels of NEFA have been shown to induce hepatic insulin resistance, which contributes to the development of type 2 diabetes. Indeed, sphingolipids can be formed via a de novo pathway from the saturated fatty acid palmitate and the amino acid serine. Besides ceramides, sphingosine 1-phosphate (S1P) has been identified as a major bioactive lipid mediator. Therefore, our aim was to investigate the generation and function of S1P in hepatic insulin resistance.MethodsThe incorporation of palmitate into sphingolipids was performed by rapid-resolution liquid chromatography-MS/MS in primary human and rat hepatocytes. The influence of S1P and the involvement of S1P receptors in hepatic insulin resistance was examined in human and rat hepatocytes, as well as in New Zealand obese (NZO) mice.ResultsPalmitate induced an impressive formation of extra- and intracellular S1P in rat and human hepatocytes. An elevation of hepatic S1P levels was observed in NZO mice fed a high-fat diet. Once generated, S1P was able, similarly to palmitate, to counteract insulin signalling. The inhibitory effect of S1P was abolished in the presence of the S1P2 receptor antagonist JTE-013 both in vitro and in vivo. In agreement with this, the immunomodulator FTY720-phosphate, which binds to all S1P receptors except S1P2, was not able to inhibit insulin signalling.Conclusions/interpretationThese data indicate that palmitate is metabolised by hepatocytes to S1P, which acts via stimulation of the S1P2 receptor to impair insulin signalling. In particular, S1P2 inhibition could be considered as a novel therapeutic target for the treatment of insulin resistance.


Laboratory Investigation | 2012

Stimulation of fat accumulation in hepatocytes by PGE 2 -dependent repression of hepatic lipolysis, β -oxidation and VLDL-synthesis

J Henkel; Katja Frede; Nancy Schanze; H. Vogel; Annette Schürmann; Astrid Spruss; Ina Bergheim; Gerhard Püschel

Hepatic steatosis is recognized as hepatic presentation of the metabolic syndrome. Hyperinsulinaemia, which shifts fatty acid oxidation to de novo lipogenesis and lipid storage in the liver, appears to be a principal elicitor particularly in the early stages of disease development. The impact of PGE2, which has previously been shown to attenuate insulin signaling and hence might reduce insulin-dependent lipid accumulation, on insulin-induced steatosis of hepatocytes was studied. The PGE2-generating capacity was enhanced in various obese mouse models by the induction of cyclooxygenase 2 and microsomal prostaglandin E-synthases (mPGES1, mPGES2). PGE2 attenuated the insulin-dependent induction of SREBP-1c and its target genes glucokinase and fatty acid synthase. Nevertheless, PGE2 enhanced incorporation of glucose into hepatic triglycerides synergistically with insulin. This was most likely due to a combination of a PGE2-dependent repression of (1) the key lipolytic enzyme adipose triglyceride lipase, (2) carnitine–palmitoyltransferase 1, a key regulator of mitochondrial β-oxidation, and (3) microsomal transfer protein, as well as (4) apolipoprotein B, key components of the VLDL synthesis. Repression of PGC1α, a common upstream regulator of these genes, was identified as a possible cause. In support of this hypothesis, overexpression of PGC1α completely blunted the PGE2-dependent fat accumulation. PGE2 enhanced lipid accumulation synergistically with insulin, despite attenuating insulin signaling and might thus contribute to the development of hepatic steatosis. Induction of enzymes involved in PGE2 synthesis in in vivo models of obesity imply a potential role of prostanoids in the development of NAFLD and NASH.


Molecular Medicine | 2017

Induction of Steatohepatitis (NASH) with Insulin Resistance in Wild-type B6 Mice by a Western-type Diet Containing Soybean Oil and Cholesterol

J Henkel; Charles Dominic Coleman

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are hepatic manifestations of the metabolic syndrome. Many currently used animal models of NAFLD/NASH lack clinical features of either NASH or metabolic syndrome such as hepatic inflammation and fibrosis (e.g., high-fat diets) or overweight and insulin resistance (e.g., methionine-choline-deficient diets), or they are based on monogenetic defects (e.g., ob/ob mice). In the current study, a Western-type diet containing soybean oil with high n-6-PUFA and 0.75% cholesterol (SOD + Cho) induced steatosis, inflammation and fibrosis accompanied by hepatic lipid peroxidation and oxidative stress in livers of C57BL/6-mice, which in addition showed increased weight gain and insulin resistance, thus displaying a phenotype closely resembling all clinical features of NASH in patients with metabolic syndrome. In striking contrast, a soybean oil-containing Western-type diet without cholesterol (SOD) induced only mild steatosis but not hepatic inflammation, fibrosis, weight gain or insulin resistance. Another high-fat diet, mainly consisting of lard and supplemented with fructose in drinking water (LAD + Fru), resulted in more prominent weight gain, insulin resistance and hepatic steatosis than SOD + Cho, but livers were devoid of inflammation and fibrosis. Although both LAD + Fru- and SOD + Cho-fed animals had high plasma cholesterol, liver cholesterol was elevated only in SOD + Cho animals. Cholesterol induced expression of chemotactic and inflammatory cytokines in cultured Kupffer cells and rendered hepatocytes more susceptible to apoptosis. In summary, dietary cholesterol in the SOD + Cho diet may trigger hepatic inflammation and fibrosis. SOD + Cho-fed animals may be a useful disease model displaying many clinical features of patients with the metabolic syndrome and NASH.


Toxicology | 2015

Arylhydrocarbon receptor-dependent mIndy (Slc13a5) induction as possible contributor to benzo[a]pyrene-induced lipid accumulation in hepatocytes.

Frank Neuschäfer-Rube; Anne Schraplau; Bettina Schewe; Stefanie Lieske; Julia-Mignon Krützfeldt; Sebastian Ringel; J Henkel; Andreas L. Birkenfeld; Gerhard Püschel

Non-alcoholic fatty liver disease is a growing problem in industrialized and developing countries. Hepatic lipid accumulation is the result of an imbalance between fatty acid uptake, fatty acid de novo synthesis, β-oxidation and secretion of triglyceride-rich lipoproteins from the hepatocyte. A central regulator of hepatic lipid metabolism is cytosolic citrate that can either be derived from the mitochondrium or be taken up from the blood via the plasma membrane sodium citrate transporter NaCT, the product of the mammalian INDY gene (SLC13A5). mINDY ablation protects against diet-induced steatosis whereas mINDY expression is increased in patients with hepatic steatosis. Diet-induced hepatic steatosis is also enhanced by activation of the arylhyrocarbon receptor (AhR) both in humans and animal models. Therefore, the hypothesis was tested whether the mINDY gene might be a target of the AhR. In accordance with such a hypothesis, the AhR activator benzo[a]pyrene induced the mINDY expression in primary cultures of rat hepatocytes in an AhR-dependent manner. This induction resulted in an increased citrate uptake and citrate incorporation into lipids which probably was further enhanced by the benzo[a]pyrene-dependent induction of key enzymes of fatty acid synthesis. A potential AhR binding site was identified in the mINDY promoter that appears to be conserved in the human promoter. Elimination or mutation of this site largely abolished the activation of the mINDY promoter by benzo[a]pyrene. This study thus identified the mINDY as an AhR target gene. AhR-dependent induction of the mINDY gene might contribute to the development of hepatic steatosis.


American Journal of Physiology-endocrinology and Metabolism | 2016

Insulin-induced cytokine production in macrophages causes insulin resistance in hepatocytes.

Julia Manowsky; Rodolfo Gonzalez Camargo; Anna P. Kipp; J Henkel; Gerhard Püschel

Overweight and obesity are associated with hyperinsulinemia, insulin resistance, and a low-grade inflammation. Although hyperinsulinemia is generally thought to result from an attempt of the β-cell to compensate for insulin resistance, there is evidence that hyperinsulinaemia itself may contribute to the development of insulin resistance and possibly the low-grade inflammation. To test this hypothesis, U937 macrophages were exposed to insulin. In these cells, insulin induced expression of the proinflammatory cytokines IL-1β, IL-8, CCL2, and OSM. The insulin-elicited induction of IL-1β was independent of the presence of endotoxin and most likely mediated by an insulin-dependent activation of NF-κB. Supernatants of the insulin-treated U937 macrophages rendered primary cultures of rat hepatocytes insulin resistant; they attenuated the insulin-dependent induction of glucokinase by 50%. The cytokines contained in the supernatants of insulin-treated U937 macrophages activated ERK1/2 and IKKβ, resulting in an inhibitory serine phosphorylation of the insulin receptor substrate. In addition, STAT3 was activated and SOCS3 induced, further contributing to the interruption of the insulin receptor signal chain in hepatocytes. These results indicate that hyperinsulinemia per se might contribute to the low-grade inflammation prevailing in overweight and obese patients and thereby promote the development of insulin resistance particularly in the liver, because the insulin concentration in the portal circulation is much higher than in all other tissues.


Scientific Reports | 2018

Augmented liver inflammation in a microsomal prostaglandin E synthase 1 (mPGES-1)-deficient diet-induced mouse NASH model

J Henkel; Charles Dominic Coleman; Anne Schraplau; Korinna Jöhrens; Thomas Weiss; Wenke Jonas; Annette Schürmann; Gerhard Püschel

In a subset of patients, non-alcoholic fatty liver disease (NAFLD) is complicated by cell death and inflammation resulting in non-alcoholic steatohepatitis (NASH), which may progress to fibrosis and subsequent organ failure. Apart from cytokines, prostaglandins, in particular prostaglandin E2 (PGE2), play a pivotal role during inflammatory processes. Expression of the key enzymes of PGE2 synthesis, cyclooxygenase 2 and microsomal PGE synthase 1 (mPGES-1), was increased in human NASH livers in comparison to controls and correlated with the NASH activity score. Both enzymes were also induced in NASH-diet-fed wild-type mice, resulting in an increase in hepatic PGE2 concentration that was completely abrogated in mPGES-1-deficient mice. PGE2 is known to inhibit TNF-α synthesis in macrophages. A strong infiltration of monocyte-derived macrophages was observed in NASH-diet-fed mice, which was accompanied with an increase in hepatic TNF-α expression. Due to the impaired PGE2 production, TNF-α expression increased much more in livers of mPGES-1-deficient mice or in the peritoneal macrophages of these mice. The increased levels of TNF-α resulted in an enhanced IL-1β production, primarily in hepatocytes, and augmented hepatocyte apoptosis. In conclusion, attenuation of PGE2 production by mPGES-1 ablation enhanced the TNF-α-triggered inflammatory response and hepatocyte apoptosis in diet-induced NASH.


Porto Biomedical Journal | 2018

Dietary cholesterol does not break your heart but kills your liver

Gerhard Püschel; J Henkel

Abstract It is increasingly accepted that dietary cholesterol has a much lower impact on the progression of cardiovascular disease than previously assumed. However, both animal experiments and human studies seem to support the view that dietary cholesterol may contribute to the transition from benign steatosis to the potentially fatal non-alcoholic steatohepatitis. Cholesterol esters and cholesterol accumulate in the hepatocyte and impair its function. This leads to oxidative stress and endoplasmic reticulum stress triggering the release of pro-inflammatory cytokines and rendering the hepatocyte more susceptible to apoptotic or necrotic cell death. Kupffer cells group around dying hepatocytes and phagocytose the hepatocyte debris and lipids. In addition, they are exposed to lipid peroxidation products released from hepatocytes. Kupffer cells, thus activated, release pro-inflammatory, chemotactic and profibrotic cytokines that promote inflammation and fibrosis. Therefore, dietary cholesterol may be harmful to the liver, in particular when administered in combination with polyunsaturated fatty acids that favor lipid peroxidation.

Collaboration


Dive into the J Henkel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M Kuna

University of Potsdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ina Bergheim

University of Hohenheim

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge