Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annette Schürmann is active.

Publication


Featured researches published by Annette Schürmann.


Journal of Clinical Investigation | 2006

Ghrelin action in the brain controls adipocyte metabolism

Claudia Theander-Carrillo; Petra Wiedmer; Philippe Cettour-Rose; Ruben Nogueiras; Diego Perez-Tilve; Paul T. Pfluger; Tamara R. Castañeda; Patrick Muzzin; Annette Schürmann; Ildiko Szanto; Matthias H. Tschöp; Françoise Rohner-Jeanrenaud

Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the CNS. The CNS also directly regulates adipocyte metabolism, as we have shown here by examining central action of the orexigenic hormone ghrelin. Chronic central ghrelin infusion resulted in increases in the glucose utilization rate of white and brown adipose tissue without affecting skeletal muscle. In white adipocytes, mRNA expression of various fat storage-promoting enzymes such as lipoprotein lipase, acetyl-CoA carboxylase alpha, fatty acid synthase, and stearoyl-CoA desaturase-1 was markedly increased, while that of the rate-limiting step in fat oxidation, carnitine palmitoyl transferase-1alpha, was decreased. In brown adipocytes, central ghrelin infusion resulted in lowered expression of the thermogenesis-related mitochondrial uncoupling proteins 1 and 3. These ghrelin effects were dose dependent, occurred independently from ghrelin-induced hyperphagia, and seemed to be mediated by the sympathetic nervous system. Additionally, the expression of some fat storage enzymes was decreased in ghrelin-deficient mice, which led us to conclude that central ghrelin is of physiological relevance in the control of cell metabolism in adipose tissue. These results unravel the existence of what we believe to be a new CNS-based neuroendocrine circuit regulating metabolic homeostasis of adipose tissue.


Journal of Clinical Investigation | 2007

The central melanocortin system directly controls peripheral lipid metabolism

Ruben Nogueiras; Petra Wiedmer; Diego Perez-Tilve; Christelle Veyrat-Durebex; Julia M. Keogh; Gregory M. Sutton; Paul T. Pfluger; Tamara R. Castañeda; Susanne Neschen; Susanna M. Hofmann; Philip N. Howles; Donald A. Morgan; Stephen C. Benoit; Ildiko Szanto; Brigitte Schrott; Annette Schürmann; Hans-Georg Joost; Craig Hammond; David Y. Hui; Stephen C. Woods; Kamal Rahmouni; Andrew A. Butler; I. Sadaf Farooqi; Françoise Rohner-Jeanrenaud; Matthias H. Tschöp

Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin receptors (Mcr) in rats and genetic disruption of Mc4r in mice directly and potently promoted lipid uptake, triglyceride synthesis, and fat accumulation in white adipose tissue (WAT), while increased CNS-Mcr signaling triggered lipid mobilization. These effects were independent of food intake and preceded changes in adiposity. In addition, decreased CNS-Mcr signaling promoted increased insulin sensitivity and glucose uptake in WAT while decreasing glucose utilization in muscle and brown adipose tissue. Such CNS control of peripheral nutrient partitioning depended on sympathetic nervous system function and was enhanced by synergistic effects on liver triglyceride synthesis. Our findings offer an explanation for enhanced adiposity resulting from decreased melanocortin signaling, even in the absence of hyperphagia, and are consistent with feeding-independent changes in substrate utilization as reflected by respiratory quotient, which is increased with chronic Mcr blockade in rodents and in humans with loss-of-function mutations in MC4R. We also reveal molecular underpinnings for direct control of the CNS-Mcr over lipid metabolism. These results suggest ways to design more efficient pharmacological methods for controlling adiposity.


Nature Medicine | 2009

GOAT links dietary lipids with the endocrine control of energy balance

Henriette Kirchner; Jesus A. Gutierrez; Patricia J. Solenberg; Paul T. Pfluger; Traci A. Czyzyk; Jill A. Willency; Annette Schürmann; Hans-Georg Joost; Ronald J. Jandacek; John E. Hale; Mark L. Heiman; Matthias H. Tschöp

Central nervous system nutrient sensing and afferent endocrine signaling have been established as parallel systems communicating metabolic status and energy availability in vertebrates. The only afferent endocrine signal known to require modification with a fatty acid side chain is the orexigenic hormone ghrelin. We find that the ghrelin O-acyl transferase (GOAT), which is essential for ghrelin acylation, is regulated by nutrient availability, depends on specific dietary lipids as acylation substrates and links ingested lipids to energy expenditure and body fat mass. These data implicate the ghrelin-GOAT system as a signaling pathway that alerts the central nervous system to the presence of dietary calories, rather than to their absence as is commonly accepted.


Molecular and Cellular Biology | 2000

p21-Activated Kinase 1 Phosphorylates the Death Agonist Bad and Protects Cells from Apoptosis

Annette Schürmann; A. F. Mooney; L. C. Sanders; Mary Ann Sells; Hong-Gang Wang; John C. Reed; Gary M. Bokoch

ABSTRACT Bad is a critical regulatory component of the intrinsic cell death machinery that exerts its death-promoting effect upon heterodimerization with the antiapoptotic proteins Bcl-2 and Bcl-xL. Growth factors promote cell survival through phosphorylation of Bad, resulting in its dissociation from Bcl-2 and Bcl-xL and its association with 14-3-3τ. Survival of interleukin 3 (IL-3)-dependent FL5.12 lymphoid progenitor cells is attenuated upon treatment with the Rho GTPase-inactivating toxin B fromClostridium difficile. p21-activated kinase 1 (PAK1) is activated by IL-3 in FL5.12 cells, and this activation is reduced by the phosphatidylinositol 3-kinase inhibitor LY294002. Overexpression of a constitutively active PAK mutant (PAK1-T423E) promoted cell survival of FL5.12 and NIH 3T3 cells, while overexpression of the autoinhibitory domain of PAK (amino acids 83 to 149) enhanced apoptosis. PAK phosphorylates Bad in vitro and in vivo on Ser112 and Ser136, resulting in a markedly reduced interaction between Bad and Bcl-2 or Bcl-xL and the increased association of Bad with 14-3-3τ. Our findings indicate that PAK inhibits the proapoptotic effects of Bad by direct phosphorylation and that PAK may play an important role in cell survival pathways.


Diabetes | 2012

Na+-d-glucose Cotransporter SGLT1 is Pivotal for Intestinal Glucose Absorption and Glucose-Dependent Incretin Secretion

Valentin Gorboulev; Annette Schürmann; Volker Vallon; Helmut Kipp; Alexander Jaschke; Dirk Klessen; Alexandra Friedrich; Stephan Scherneck; Timo Rieg; Robyn Cunard; Maike Veyhl-Wichmann; Aruna Srinivasan; Daniela Balen; Davorka Breljak; Rexhep Rexhepaj; Helen Parker; Fiona M. Gribble; Frank Reimann; Florian Lang; Stefan Wiese; Ivan Sabolić; Michael Sendtner; Hermann Koepsell

To clarify the physiological role of Na+-d-glucose cotransporter SGLT1 in small intestine and kidney, Sglt1−/− mice were generated and characterized phenotypically. After gavage of d-glucose, small intestinal glucose absorption across the brush-border membrane (BBM) via SGLT1 and GLUT2 were analyzed. Glucose-induced secretion of insulinotropic hormone (GIP) and glucagon-like peptide 1 (GLP-1) in wild-type and Sglt1−/− mice were compared. The impact of SGLT1 on renal glucose handling was investigated by micropuncture studies. It was observed that Sglt1−/− mice developed a glucose-galactose malabsorption syndrome but thrive normally when fed a glucose-galactose–free diet. In wild-type mice, passage of d-glucose across the intestinal BBM was predominantly mediated by SGLT1, independent the glucose load. High glucose concentrations increased the amounts of SGLT1 and GLUT2 in the BBM, and SGLT1 was required for upregulation of GLUT2. SGLT1 was located in luminal membranes of cells immunopositive for GIP and GLP-1, and Sglt1−/− mice exhibited reduced glucose-triggered GIP and GLP-1 levels. In the kidney, SGLT1 reabsorbed ∼3% of the filtered glucose under normoglycemic conditions. The data indicate that SGLT1 is 1) pivotal for intestinal mass absorption of d-glucose, 2) triggers the glucose-induced secretion of GIP and GLP-1, and 3) triggers the upregulation of GLUT2.


Journal of Parenteral and Enteral Nutrition | 2004

The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function

Andrea Scheepers; Hans-Georg Joost; Annette Schürmann

Glucose enters eucaryotic cells via 2 different types of membrane associated carrier proteins, the Na+-coupled glucose transporters (SGLT) and glucose transporter facilitators (GLUT). Three members of the SGLT family function as sugar transporters (SGLT1 and SGLT2) or sensors (SGLT3). The human GLUT family consists of 14 members, of which 11 have been shown to catalyze sugar transport. The individual isotypes exhibit different substrate specificity, kinetic characteristics, and expression profiles, thereby allowing a tissue-specific adaptation of glucose uptake through regulation of their gene expression. Furthermore, some transporters (eg, GLUT4 and GLUT8) are regulated by their subcellular distribution. In addition to catalyzing glucose entry into cells, some isotypes (eg, GLUT2) seem to be involved in the mechanisms of glucosensing of pancreatic beta-cells, neuronal, or other cells, thereby playing a major role in the hormonal and neural control. Targeted disruption in mice has helped to elucidate the physiologic function of some isotypes (GLUT1, GLUT2, GLUT4). Furthermore, several congenital defects of sugar metabolism are caused by aberrant transporter genes (eg, the glucose-galactose malabsorption syndrome, SGLT1; the glucose transporter 1 deficiency syndrome; and the Fanconi-Bickel syndrome, GLUT2). In addition, a malfunction of glucose transporter expression or regulation (GLUT4) appears to contribute to the insulin resistance syndrome.


Nature Medicine | 2001

HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals.

Dietlinde Wolf; Vanessa Witte; Bernd Laffert; Katja Blume; Elisabeth Stromer; Susanna Trapp; Paola D'Aloja; Annette Schürmann; Andreas Baur

A highly conserved signaling property of Nef proteins encoded by human or simian immunodeficiency virus is the binding and activation of a PAK kinase whose function is unclear. Here we show that Nef-mediated p21-activated kinase (PAK) activation involves phosphatidylinositol 3-kinase, which acts upstream of PAK and is bound and activated by Nef similar to the manner of Polyoma virus middle T antigen. The Nef-associated phosphatidylinositol-3–PAK complex phosphorylated the pro-apoptotic Bad protein without involving the protein kinase B–Akt kinase, which is generally believed to inactivate Bad by serine phosphorylation. Consequently, Nef, but not a Nef mutant incapable of activating PAK, blocked apoptosis in T cells induced by serum starvation or HIV replication. Nef anti-apoptotic effects are likely a crucial mechanism for viral replication in the host and thus in AIDS pathogenesis.


PLOS Genetics | 2010

Two new Loci for body-weight regulation identified in a joint analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

André Scherag; Christian Dina; Anke Hinney; Vincent Vatin; Susann Scherag; Carla I. G. Vogel; Timo D. Müller; Harald Grallert; H.-Erich Wichmann; Beverley Balkau; Barbara Heude; Marjo-Riitta Järvelin; Anna-Liisa Hartikainen; Claire Levy-Marchal; Jacques Weill; Jérôme Delplanque; Antje Körner; Wieland Kiess; Peter Kovacs; Nigel W. Rayner; Inga Prokopenko; Mark McCarthy; Helmut Schäfer; Ivonne Jarick; Heiner Boeing; Eva Fisher; Thomas Reinehr; Joachim Heinrich; Peter Rzehak; Dietrich Berdel

Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85×10−8 in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84×10−7), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at ∼1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.


Journal of Biological Chemistry | 2000

GLUT8, a Novel Member of the Sugar Transport Facilitator Family with Glucose Transport Activity

Holger Doege; Annette Schürmann; Gregor Bahrenberg; Andreas Brauers; Hans-Georg Joost

GLUT8 is a novel glucose transporter-like protein that exhibits significant sequence similarity with the members of the sugar transport facilitator family (29.4% of amino acids identical with GLUT1). Human and mouse sequence (86.2% identical amino acids) comprise 12 putative membrane-spanning helices and several conserved motifs (sugar transporter signatures), which have previously been shown to be essential for transport activity, e.g. GRK in loop 2, PETPR in loop 6, QQLSGVN in helix 7, DRAGRR in loop 8, GWGPIPW in helix 10, and PETKG in the C-terminal tail. An expressed sequence tag (STS A005N15) corresponding with the 3′-untranslated region of GLUT8 has previously been mapped to human chromosome 9. COS-7 cells transfected with GLUT8 cDNA expressed a 42-kDa protein exhibiting specific, glucose-inhibitable cytochalasin B binding (KD = 56.6 ± 18 nm) and reconstitutable glucose transport activity (8.1 ± 1.4 nmol/(mg protein × 10 s)versus 1.1 ± 0.1 in control transfections). In human tissues, a 2.4-kilobase pair transcript was predominantly found in testis, but not in testicular carcinoma. Lower amounts of the mRNA were detected in most other tissues including skeletal muscle, heart, small intestine, and brain. GLUT8 mRNA was found in testis from adult, but not from prepubertal rats; its expression in human testis was suppressed by estrogen treatment. It is concluded that GLUT8 is a sugar transport facilitator with glucose transport activity and a hormonally regulated testicular function.


Journal of Cell Biology | 2006

Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins

Richard A. Kahn; Jacqueline Cherfils; Marek Eliáš; Ruth C. Lovering; Sean Munro; Annette Schürmann

The Ras superfamily is comprised of at least four large families of regulatory guanosine triphosphate–binding proteins, including the Arfs. The Arf family includes three different groups of proteins: the Arfs, Arf-like (Arls), and SARs. Several Arf family members have been very highly conserved throughout eukaryotic evolution and have orthologues in evolutionally diverse species. The different means by which Arf family members have been identified have resulted in an inconsistent and confusing array of names. This confusion is further compounded by differences in nomenclature between different species. We propose a more consistent nomenclature for the human members of the Arf family that may also serve as a guide for nomenclature in other species.

Collaboration


Dive into the Annette Schürmann's collaboration.

Top Co-Authors

Avatar

Hg Joost

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Vogel

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hadi Al-Hasani

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deike Hesse

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heike Vogel

University of Gothenburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge