Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Montes is active.

Publication


Featured researches published by D. Montes.


Monthly Notices of the Royal Astronomical Society | 2001

Late-type members of young stellar kinematic groups - I. Single stars

D. Montes; J. López-Santiago; M. C. Gálvez; M. J. Fernandez-Figueroa; E. de Castro; M. Cornide

This is the first paper of a series aimed at studying the properties of late-type members of young stellar kinematic groups. We concentrate our study on classical young moving groups such as the Local Association (Pleiades moving group, 20-150 Myr), IC 2391 supercluster (35 Myr), Ursa Major group (Sirius supercluster, 300 Myr), and Hyades supercluster (600 Myr), as well as on recently identified groups such as the Castor moving group (200 Myr). In this paper we compile a preliminary list of single late-type possible members of some of these young stellar kinematic groups. Stars are selected from previously established members of stellar kinematic groups based on photometric and kinematic properties as well as from candidates based on other criteria such as their level of chromospheric activity, rotation rate and lithium abundance. Precise measurements of proper motions and parallaxes taken from the Hipparcos Catalogue, as well as from the Tycho-2 Catalogue, and published radial velocity measurements are used to calculate the Galactic space motions (U, V W) and to apply Eggens kinematic criteria in order to determine the membership of the selected stars to the different groups. Additional criteria using age-dating methods for late-type stars will be applied in forthcoming papers of this series. A further study of the list of stars compiled here could lead to a better understanding of the chromospheric activity and their age evolution, as well as of the star formation history in the solar neighbourhood. In addition, these stars are also potential search targets for direct imaging detection of substellar companions.


The Astrophysical Journal | 2006

THE NEAREST YOUNG MOVING GROUPS

J. López-Santiago; D. Montes; I. Crespo-Chacón; M. J. Fernandez-Figueroa

The latest results in the research of forming planetary systems have led several authors to compile a sample of candidates for searching for planets in the vicinity of the Sun. Young stellar associations are indeed excellent laboratories for this study, but some of them are not close enough to allow the detection of planets through adaptive optics techniques. However, the existence of very close young moving groups can solve this problem. Here we have compiled the members of the nearest young moving groups, as well as a list of new candidates from our catalog of late-type stars that are possible members of young stellar kinematic groups, studying their membership through spectroscopic and photometric criteria.


Astronomy and Astrophysics | 2013

DUst around NEarby Stars. The survey observational results

C. Eiroa; A. Mora; B. Montesinos; Olivier Absil; J.-Ch. Augereau; A. Bayo; G. Bryden; W. C. Danchi; C. del Burgo; S. Ertel; M. Fridlund; A. M. Heras; Alexander V. Krivov; R. Launhardt; R. Liseau; T. Löhne; J. Maldonado; G. L. Pilbratt; Aki Roberge; J. Rodmann; J. Sanz-Forcada; E. Solano; Karl R. Stapelfeldt; Philippe Thebault; Sebastian Wolf; D. R. Ardila; Maria Jesus Arevalo; C. Beichmann; V. Faramaz; B. M. González-García

Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 mu m were obtained, complemented in some cases with observations at 70 mu m, and at 250, 350 and 500 mu m using SPIRE. The observing strategy was to integrate as deep as possible at 100 mu m to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of similar to 12.1% +/- 5% before Herschel to similar to 20.2% +/- 2%. A significant fraction (similar to 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160 mu m range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.


Astronomy and Astrophysics | 2014

Gaia FGK benchmark stars: Metallicity

P. Jofre; Ulrike Heiter; Caroline Soubiran; S. Blanco-Cuaresma; C. C. Worley; E. Pancino; T. Cantat-Gaudin; L. Magrini; Maria Bergemann; J. I. González Hernández; V. Hill; C. Lardo; P. de Laverny; Karin Lind; T. Masseron; D. Montes; A. Mucciarelli; Thomas Nordlander; A. Recto Blanco; J. Sobeck; R. Sordo; S. G. Sousa; H. M. Tabernero; A. Vallenari; S. Van Eck

Context. To calibrate automatic pipelines that determine atmospheric parameters of stars, one needs a sample of stars, or “benchmark stars”, with well-defined parameters to be used as a reference. Aims. We provide detailed documentation of the iron abundance determination of the 34 FGK-type benchmark stars that are selected to be the pillars for calibration of the one billion Gaia stars. They cover a wide range of temperatures, surface gravities, and metallicities. Methods. Up to seven different methods were used to analyze an observed spectral library of high resolutions and high signal-to-noise ratios. The metallicity was determined by assuming a value of effective temperature and surface gravity obtained from fundamental relations; that is, these parameters were known a priori and independently from the spectra. Results. We present a set of metallicity values obtained in a homogeneous way for our sample of benchmark stars. In addition to this value, we provide detailed documentation of the associated uncertainties. Finally, we report a value of the metallicity of the cool giant ψ Phe for the first time.


Astronomy and Astrophysics | 2010

Chromospheric activity and rotation of FGK stars in the solar vicinity - An estimation of the radial velocity jitter

R. M. Martínez-Arnáiz; J. Maldonado; D. Montes; C. Eiroa; B. Montesinos

Context. Chromospheric activity produces both photometric and spectroscopic variations that can be mistaken as planets. Large spots crossing the stellar disc can produce planet-like periodic variations in the light curve of a star. These spots clearly affect the spectral line profiles, and their perturbations alter the line centroids creating a radial velocity jitter that might “contaminate” the variations induced by a planet. Precise chromospheric activity measurements are needed to estimate the activity-induced noise that should be expected for a given star. Aims. We obtain precise chromospheric activity measurements and projected rotational velocities for nearby (d ≤ 25 pc) cool (spectral types F to K) stars, to estimate their expected activity-related jitter. As a complementary objective, we attempt to obtain relationships between fluxes in different activity indicator lines, that permit a transformation of traditional activity indicators, i.e., Ca II H & K lines, to others that hold noteworthy advantages. Methods. We used high resolution (~50 000) echelle optical spectra. Standard data reduction was performed using the IRAF ECHELLE package. To determine the chromospheric emission of the stars in the sample, we used the spectral subtraction technique. We measured the equivalent widths of the chromospheric emission lines in the subtracted spectrum and transformed them into fluxes by applying empirical equivalent width and flux relationships. Rotational velocities were determined using the cross-correlation technique. To infer activity-related radial velocity (RV) jitter, we used empirical relationships between this jitter and the R’_HK index. Results. We measured chromospheric activity, as given by different indicators throughout the optical spectra, and projected rotational velocities for 371 nearby cool stars. We have built empirical relationships among the most important chromospheric emission lines. Finally, we used the measured chromospheric activity to estimate the expected RV jitter for the active stars in the sample.


The Astrophysical Journal | 2006

The First Extrasolar Planet Discovered with a New-Generation High-Throughput Doppler Instrument

Jian Ge; Julian Christopher van Eyken; Suvrath Mahadevan; Curtis N. DeWitt; Stephen R. Kane; Roger E. Cohen; Andrew Vanden Heuvel; Scott W. Fleming; Pengcheng Guo; Gregory W. Henry; Donald P. Schneider; Lawrence W. Ramsey; Robert A. Wittenmyer; Michael Endl; William D. Cochran; Eric B. Ford; E. L. Martín; G. Israelian; Jeff A. Valenti; D. Montes

We report the detection of the first extrasolar planet, ET-1 (HD 102195b), using the Exoplanet Tracker (ET), a new-generation Doppler instrument. The planet orbits HD 102195, a young star with solar metallicity that may be part of the local association. The planet imparts radial velocity variability to the star with a semiamplitude of 63.4 ± 2.0 m s-1 and a period of 4.11 days. The planetary minimum mass (m sin i) is 0.488MJ ± 0.015MJ. The planet was initially detected in the spring of 2005 with the Kitt Peak National Observatory (KPNO) 0.9 m coude feed telescope. The detection was confirmed by radial velocity observations with the ET at the KPNO 2.1 m telescope and also at the 9 m Hobby-Eberly Telescope (HET) with its High Resolution Spectrograph. This planetary discovery with a 0.9 m telescope around a V = 8.05 magnitude star was made possible by the high throughput of the instrument: 49% measured from the fiber output to the detector. The ETs interferometer-based approach is an effective method for planet detection. In addition, the ET concept is adaptable to multiple-object Doppler observations or very high precision observations with a cross-dispersed echelle spectrograph to separate stellar fringes over a broad wavelength band. In addition to spectroscopic observations of HD 102195, we obtained brightness measurements with one of the automated photometric telescopes at Fairborn Observatory. Those observations reveal that HD 102195 is a spotted variable star with an amplitude of ~0.015 mag and a 12.3 ± 0.3 day period. This is consistent with spectroscopically observed Ca II H and K emission levels and line-broadening measurements but inconsistent with rotational modulation of surface activity as the cause of the radial velocity variability. Our photometric observations rule out transits of the planetary companion.


Astronomy and Astrophysics | 2010

A spectroscopy study of nearby late-type stars, possible members of stellar kinematic groups

J. Maldonado; R. M. Martínez-Arnáiz; C. Eiroa; D. Montes; B. Montesinos

Context. Nearby late-type stars are excellent targets for seeking young objects in stellar associations and moving groups. The origin of these structures is still misunderstood, and lists of moving group members often change with time and also from author to author. Most members of these groups have been identified by means of kinematic criteria, leading to an important contamination of previous lists by old field stars. Aims. We attempt to identify unambiguous moving group members among a sample of nearby-late type stars by studying their kinematics, lithium abundance, chromospheric activity, and other age-related properties. Methods. High-resolution echelle spectra (R ∼ 57 000) of a sample of nearby late-type stars are used to derive accurate radial velocities that are combined with the precise Hipparcos parallaxes and proper motions to compute galactic-spatial velocity components. Stars are classified as possible members of the classical moving groups according to their kinematics. The spectra are also used to study several age-related properties for young late-type stars, i.e., the equivalent width of the lithium Li i 6707.8 A line or the R � index. Additional information like X-ray fluxes from the ROSAT All-Sky Survey or the presence of debris discs is also taken into account. The different age estimators are compared and the moving group membership of the kinematically selected candidates are discussed. Results. From a total list of 405 nearby stars, 102 have been classified as moving group candidates according to their kinematics. i.e., only ∼25.2% of the sample. The number reduces when age estimates are considered, and only 26 moving group candidates (25.5% of the 102 candidates) have ages in agreement with the star having the same age as an MG member.


Astronomy and Astrophysics | 2010

Cold DUst around NEarby Stars (DUNES). First results A resolved exo-Kuiper belt around the solar-like star zeta(2) Ret

C. Eiroa; D. Fedele; J. Maldonado; B. M. González-García; Jens Rodmann; A. M. Heras; G. L. Pilbratt; J.-C. Augereau; A. Mora; B. Montesinos; D. R. Ardila; G. Bryden; R. Liseau; Karl R. Stapelfeldt; R. Launhardt; E. Solano; A. Bayo; Olivier Absil; Maria Jesus Arevalo; D. Barrado; C. Beichmann; W. C. Danchi; C. del Burgo; S. Ertel; M. Fridlund; Misato Fukagawa; R. Gutiérrez; E. Grün; Inga Kamp; Alexander V. Krivov

We present the first far-IR observations of the solar-type stars delta Pav, HR 8501, 51 Peg and zeta(2) Ret, taken within the context of the DUNES Herschel open time key programme (OTKP). This project uses the PACS and SPIRE instruments with the objective of studying infrared excesses due to exo-Kuiper belts around nearby solar-type stars. The observed 100 mu m fluxes from delta Pav, HR 8501, and 51 Peg agree with the predicted photospheric fluxes, excluding debris disks brighter than L-dust/L-star similar to 5 x 10(-7) (1 sigma level) around those stars. A flattened, disk-like structure with a semi-major axis of similar to 100 AU in size is detected around zeta(2) Ret. The resolved structure suggests the presence of an eccentric dust ring, which we interpret as an exo-Kuiper belt with L-dust/L-star approximate to 10(-5).


Astronomy & Astrophysics Supplement Series | 2000

Multiwavelength optical observations of chromospherically active binary systems - III. High resolution echelle spectra from Ca ii H & K to Ca ii IRT

D. Montes; M. J. Fernandez-Figueroa; E. de Castro; M. Cornide; Andreia Oliveira Latorre; J. Sanz-Forcada

This is the third paper of a series aimed at studying the chromosphere of active binary systems using the information provided for several optical spectroscopic features. High resolution echelle spectra including all the optical chromospheric activity indicators from the Ca II H & K to Ca II IRT lines are analysed here for 16 systems. The chromospheric contribution in these lines has been determined using the spectral subtraction technique. Very broad wings have been found in the subtracted H alpha profilp of the very active star HU Vir. These profiles are well matched using a two-component Gaussian fit; (narrow and broad) ard the broad component carl be interpreted as arising from microflaring. Red-shifted absorption features in the EHα line have been detected in several systems and excess emission in the blue wing of FG UMa was also detected. These features indicate that several dynamical processes, or a combination of them, may be involved. Using the EHα/EHβ ratio as a diagnostic we have detected prominence-like extended material viewed off the limb in many stars of the sample, and prominences viewed against the disk at some orbital phases in the dwarfs OU Gem and BF Lyn, The He I D_3 line has been detected as an absorption feature in mainly all the giants of the sample. Total filling-in of the He I D_3, probably due to microflaring activity, is observed in HU Vir. Self-absorption with red asymmetry is detected in the Ca II H & K lines of the giants 12 Cam: FG UMa and BM CVn. All the stars analysed show clear filled-in Ca II IRT lines or even notable emission reversal. The small values of the E_8542/E_8498 ratio we have found indicate Ca II IRT emission arises from plage-like regions. Orbital phase modulation of the chromospheric emission has been detected in some systems, in the case of HU Vir evidence of an active longitude area has been found.


Astronomy and Astrophysics | 2015

Gaia FGK benchmark stars: abundances of α and iron-peak elements

P. Jofre; Ulrike Heiter; Caroline Soubiran; S. Blanco-Cuaresma; T. Masseron; Thomas Nordlander; L. Chemin; C. C. Worley; S. Van Eck; A. Hourihane; G. Gilmore; V. Adibekyan; Maria Bergemann; T. Cantat-Gaudin; E. Delgado-Mena; J. I. González Hernández; G. Guiglion; C. Lardo; P. de Laverny; Karin Lind; L. Magrini; S. Mikolaitis; D. Montes; E. Pancino; A. Recio-Blanco; R. Sordo; S. G. Sousa; H. M. Tabernero; A. Vallenari

Context. In the current era of large spectroscopic surveys of the Milky Way, reference stars for calibrating astrophysical parameters and chemical abundances are of paramount importance. Aims. We determine elemental abundances of Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni for our predefined set of Gaia FGK benchmark stars. Methods. By analysing high-resolution spectra with a high signal-to-noise ratio taken from several archive datasets, we combined results of eight different methods to determine abundances on a line-by-line basis. We performed a detailed homogeneous analysis of the systematic uncertainties, such as differential versus absolute abundance analysis. We also assessed errors that are due to non-local thermal equilibrium and the stellar parameters in our final abundances. Results. Our results are provided by listing final abundances and the different sources of uncertainties, as well as line-by-line and method-by-method abundances. Conclusions. The atmospheric parameters of the Gaia FGK benchmark stars are already being widely used for calibration of several pipelines that are applied to different surveys. With the added reference abundances of ten elements, this set is very suitable for calibrating the chemical abundances obtained by these pipelines.

Collaboration


Dive into the D. Montes's collaboration.

Top Co-Authors

Avatar

M. J. Fernandez-Figueroa

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

E. de Castro

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

M. Cornide

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

J. López-Santiago

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

J. A. Caballero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

H. M. Tabernero

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

M. C. Gálvez

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

C. Eiroa

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

I. Crespo-Chacón

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

P. J. Amado

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge