Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. J. Hyslop is active.

Publication


Featured researches published by J. J. Hyslop.


PLOS Genetics | 2016

Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

Rainer Roehe; Richard J. Dewhurst; Carol-Anne Duthie; J. A. Rooke; Nest McKain; Dave Ross; J. J. Hyslop; Anthony Waterhouse; Tom C. Freeman; Michael Watson; R. John Wallace

Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome.


British Journal of Nutrition | 2014

Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype.

J. A. Rooke; R. John Wallace; Carol-Anne Duthie; Nest McKain; Shirley Motta de Souza; J. J. Hyslop; D. W. Ross; Tony Waterhouse; Rainer Roehe

The aims of the present study were to quantify hydrogen (H2) and methane (CH4) emissions from beef cattle under different dietary conditions and to assess how cattle genotype and rumen microbial community affected these emissions. A total of thirty-six Aberdeen Angus-sired (AAx) and thirty-six Limousin-sired (LIMx) steers were fed two diets with forage:concentrate ratios (DM basis) of either 8:92 (concentrate) or 52:48 (mixed). Each diet was fed to eighteen animals of each genotype. Methane (CH4) and H2 emissions were measured individually in indirect respiration chambers. H2 emissions (mmol/min) varied greatly throughout the day, being highest after feed consumption, and averaged about 0·10 mol H2/mol CH4. Higher H2 emissions (mol/kg DM intake) were recorded in steers fed the mixed diet. Higher CH4 emissions (mol/d and mol/kg DM intake) were recorded in steers fed the mixed diet (P< 0·001); the AAx steers produced more CH4 on a daily basis (mol/d, P< 0·05) but not on a DM intake basis (mol/kg DM intake). Archaea (P= 0·002) and protozoa (P< 0·001) were found to be more abundant and total bacteria (P< 0·001) less abundant (P< 0·001) on feeding the mixed diet. The relative abundance of Clostridium cluster IV was found to be greater (P< 0·001) and that of cluster XIVa (P= 0·025) lower on feeding the mixed diet. The relative abundance of Bacteroides plus Prevotella was greater (P= 0·018) and that of Clostridium cluster IV lower (P= 0·031) in the LIMx steers. There were no significant relationships between H2 emissions and microbial abundance. In conclusion, the rate of H2 production immediately after feeding may lead to transient overloading of methanogenic archaea capacity to use H2, resulting in peaks in H2 emissions from beef cattle.


Scientific Reports | 2015

Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle

R. John Wallace; J. A. Rooke; Carol-Anne Duthie; J. J. Hyslop; D. W. Ross; Nest McKain; Shirley Motta de Souza; Timothy J. Snelling; Anthony Waterhouse; Rainer Roehe

Methane produced from 35 Aberdeen-Angus and 33 Limousin cross steers was measured in respiration chambers. Each group was split to receive either a medium- or high-concentrate diet. Ruminal digesta samples were subsequently removed to investigate correlations between methane emissions and the rumen microbial community, as measured by qPCR of 16S or 18S rRNA genes. Diet had the greatest influence on methane emissions. The high-concentrate diet resulted in lower methane emissions (P < 0.001) than the medium-concentrate diet. Methane was correlated, irrespective of breed, with the abundance of archaea (R = 0.39), bacteria (−0.47), protozoa (0.45), Bacteroidetes (−0.37) and Clostridium Cluster XIVa (−0.35). The archaea:bacteria ratio provided a stronger correlation (0.49). A similar correlation was found with digesta samples taken 2–3 weeks later at slaughter. This finding could help enable greenhouse gas emissions of large animal cohorts to be predicted from samples taken conveniently in the abattoir.


Journal of Animal Science | 2013

Short-term temperament tests in beef cattle relate to long-term measures of behavior recorded in the home pen

Simon P. Turner; J. J. Hyslop; John M. Deag; Marie J. Haskell

Handling temperament tests for beef cattle have been related to production traits, with calmer temperaments having greater growth rates. In most tests of temperament or personality, observation of the animal takes place over a short period of time, sometimes completed in a matter of minutes. This study investigated whether behavior observed in a temperament test was reflective of the steers behavior in the home pen. Indoor-housed, crossbred, Bos taurus beef steers (n = 67) were fitted with triaxial activity monitors (IceTags; IceRobotics Ltd., South Queensferry, Edinburgh, Scotland) and activity was recorded for 2 periods of 14 d each. Also, each steer was scored on 4 measures of temperament: 2 handling tests (flight speed and chute score) and 2 feeding behavior scores (aggression at feeders and ability to displace at feeders). Each temperament observation was repeated 4 times, with repeatability of the traits ranging from 0.23 (aggression) to 0.48 (flight speed). Activity measures derived from the accelerometer data, such as bout lengths, were found to be highly repeatable between the 2 periods of activity monitoring (repeatabilities of 0.67 and 0.70 for average lying bout duration and average standing bout duration, respectively). Steers with high flight speeds were also more active in the home pen (MotionIndex: rs = 0.35, P = 0.004; average step count: rs = 0.34, P = 0.005) than steers with low flight speeds. Steers that were more capable of displacing other steers at feeders had longer average standing bout durations (rs = 0.26, P = 0.036), which were more variable (standing time SD: rs = 0.27, P = 0.030), and lay down for less time (rs = -0.35, P = 0.004). No correlations were found between aggression at feeders or chute score and home pen behavior. Results of this study are the first to demonstrate that short-term temperament tests are related to longer-term behavior data in beef steers and these results should be taken into consideration for future research.


Journal of Animal Science | 2015

Effectiveness of nitrate addition and increased oil content as methane mitigation strategies for beef cattle fed two contrasting basal diets

Shane M. Troy; Carol-Anne Duthie; J. J. Hyslop; Rainer Roehe; Dave Ross; Robert John Wallace; Anthony Waterhouse; J. A. Rooke

The objectives of this study were to investigate the effects of (1) the addition of nitrate and (2) an increase in dietary oil on methane (CH4) and hydrogen (H2) emissions from 2 breeds (cross-bred Charolais and purebred Luing) of finishing beef cattle receiving 2 contrasting basal diets consisting (grams per kilogram DM) of 500:500 (Mixed) and 80:920 (Concentrate) forage to concentrate ratios. Within each basal diet there were 3 treatments: (i) control treatments (mixed-CTL and concentrate-CTL) contained rapeseed meal as the protein source, which was replaced with either (ii) calcium nitrate (mixed-NIT and concentrate-NIT) supplying 21.5 g nitrate/kg DM, or (iii) rapeseed cake (mixed-RSC and concentrate-RSC) to increase dietary oil from 27 (CTL) to 53 g/kg DM (RSC). Following adaption to diets, CH4 and H2 emissions were measured on 1 occasion from each of the 76 steers over a 13-wk period. Dry matter intakes tended (P = 0.051) to be greater for the concentrate diet than the mixed diet; however, when expressed as grams DMI per kilogram BW, there was no difference between diets (P = 0.41). Dry matter intakes for NIT or RSC did not differ from CTL. Steers fed a concentrate diet produced less CH4 and H2 than those fed a mixed diet (P < 0.001). Molar proportions of acetate (P < 0.001) and butyrate (P < 0.01) were lower and propionate (P < 0.001) and valerate (P < 0.05) higher in the rumen fluid from steers fed the concentrate diet. For the mixed diet, CH4 yield (grams per kilogram DMI) was decreased by 17% when nitrate was added (P < 0.01), while H2 yield increased by 160% (P < 0.001). The addition of RSC to the mixed diet decreased CH4 yield by 7.5% (P = 0.18). However, for the concentrate diet neither addition of nitrate (P = 0.65) nor increasing dietary oil content (P = 0.46) decreased CH4 yield compared to concentrate-CTL. Molar proportions of acetate were higher (P < 0.001) and those of propionate lower (P < 0.01) in rumen fluid from NIT treatments compared to respective CTL treatments. Overall, reductions in CH4 emissions from adding nitrate or increasing the oil content of the mixed diet were similar to those expected from previous reports. However, the lack of an effect of these mitigation strategies when used with high concentrate diets has not been previously reported. This study shows that the effect of CH4 mitigation strategies is basal diet-dependent.


Journal of Animal Science | 2014

Evaluation of the laser methane detector to estimate methane emissions from ewes and steers.

P. Ricci; Mizeck G. G. Chagunda; J. A. Rooke; J.G.M. Houdijk; Carol-Anne Duthie; J. J. Hyslop; Rainer Roehe; Anthony Waterhouse

The laser methane detector (LMD) has been proposed as a method to characterize enteric methane (CH4) emissions from animals in a natural environment. To validate LMD use, its CH4 outputs (LMD-CH4), were compared against CH4 measured with respiration chambers (chamber-CH4). The LMD was used to measure CH4 concentration (µL/L) in the exhaled air of 24 lactating ewes and 72 finishing steers. In ewes, LMD was used on 1 d for each ewe, for 2-min periods at 5 hourly observation periods (P1 to P5, respectively) after feeding. In steers fed either low- or high-concentrate diets, LMD was used once daily for a 4-min period for 3 d. The week after LMD-CH4 measurement, ewes or steers entered respiration chambers to quantify daily CH4 output (g/d). The LMD outputs consisted of periodic events of high CH4 concentrations superimposed on a background of oscillating lower CH4 concentrations. The high CH4 events were attributed to eructation and the lower background CH4 to respiration. After fitting a double normal distribution to the data set, a threshold of 99% of probability of the lower distribution was used to separate respiration from eructation events. The correlation between mean LMD-CH4 and chamber-CH4 was not high, and only improved correlations were observed after data were separated in 2 levels. In ewes, a model with LMD and DMI (adjusted R(2) = 0.92) improved the relationship between DMI and chamber-CH4 alone (adjusted R(2) = 0.79) and between LMD and chamber-CH4 alone (adjusted R(2) = 0.86). In both experiments, chamber-CH4 was best explained by models with length of eructation events (time) and maximum values of CH4 concentration during respiration events (µL/L; P < 0.01). Correlation between methods differed between observation periods, indicating the best results of the LMD were observed from 3 to 5 h after feeding. Given the short time and ease of use of LMD, there is potential for its commercial application and field-based studies. Although good indicators of quantity of CH4 were obtained with respiration and eructation CH4, the method needed to separate the data into high and low levels of CH4 was not simple to apply in practice. Further assessment of the LMD should be performed in relation to animal feeding behavior and physiology to validate assumptions of eructation and respiration levels, and other sources of variation should be tested (i.e., micrometeorology) to better investigate its potential application for CH4 testing in outdoor conditions.


Animal | 2016

Impact of adding nitrate or increasing the lipid content of two contrasting diets on blood methaemoglobin and performance of two breeds of finishing beef steers.

Carol-Anne Duthie; J. A. Rooke; Shane M. Troy; J. J. Hyslop; Dave Ross; Anthony Waterhouse; Rainer Roehe

Adding nitrate to the diet or increasing the concentration of dietary lipid are effective strategies for reducing enteric methane emissions. This study investigated their effect on health and performance of finishing beef cattle. The experiment was a two×two×three factorial design comprising two breeds (CHX, crossbred Charolais; LU, Luing); two basal diets consisting of (g/kg dry matter (DM), forage to concentrate ratios) 520 : 480 (Mixed) or 84 : 916 (Concentrate); and three treatments: (i) control with rapeseed meal as the main protein source replaced with either (ii) calcium nitrate (18 g nitrate/kg diet DM) or (iii) rapeseed cake (RSC, increasing acid hydrolysed ether extract from 25 to 48 g/kg diet DM). Steers (n=84) were allocated to each of the six basal diet×treatments in equal numbers of each breed with feed offered ad libitum. Blood methaemoglobin (MetHb) concentrations (marker for nitrate poisoning) were monitored throughout the study in steers receiving nitrate. After dietary adaptation over 28 days, individual animal intake, performance and feed efficiency were recorded for a test period of 56 days. Blood MetHb concentrations were low and similar up to 14 g nitrate/kg diet DM but increased when nitrate increased to 18 g nitrate/kg diet DM (P0.05). Neither basal diet nor treatment affected carcass quality (P>0.05), but CHX steers achieved a greater killing out proportion (P<0.001) than LU steers. Thus, adding nitrate to the diet or increasing the level of dietary lipid through the use of cold-pressed RSC, did not adversely affect health or performance of finishing beef steers when used within the diets studied.


systems man and cybernetics | 2011

Statistical Interaction Modeling of Bovine Herd Behaviors

Bruce Stephen; Cathy Dwyer; J. J. Hyslop; Matthew Bell; D. W. Ross; Kae Hsiang Kwong; W. Craig Michie; Ivan Andonovic

While there has been interest in modeling the group behavior of herds or flocks, much of this work has focused on simulating their collective spatial motion patterns, which have not accounted for individuality in the herd and instead assume a homogenized role for all members or subgroups of the herd. Animal behavior experts have noted that domestic animals exhibit behaviors that are indicative of social hierarchy: leader/follower type behaviors are present as well as dominance and subordination, aggression and rank order, and specific social affiliations may also exist. Both wild and domestic cattle are social species, and group behaviors are likely to be influenced by the expression of specific social interactions. In this paper, global positioning system coordinate fixes gathered from a herd of beef cows tracked in open fields over several days at a time are utilized to learn a model that focuses on the interactions within the herd as well as its overall movement. Using these data, in this way, explores the validity of existing group behavior models against actual herding behaviors. Domain knowledge, location geography, and human observations are utilized to explain the causes of these deviations from this idealized behavior.


Animal | 2017

The effect of dietary addition of nitrate or increase in lipid concentrations, alone or in combination, on performance and methane emissions of beef cattle

Carol-Anne Duthie; Shane M. Troy; J. J. Hyslop; Dave Ross; Rainer Roehe; J. A. Rooke

Adding nitrate to or increasing the concentration of lipid in the diet are established strategies for reducing enteric methane (CH4) emissions, but their effectiveness when used in combination has been largely unexplored. This study investigated the effect of dietary nitrate and increased lipid included alone or together on CH4 emissions and performance traits of finishing beef cattle. The experiment was a 2×4 factorial design comprising two breeds (cross-bred Aberdeen Angus (AAx) and cross-bred Limousin (LIMx) steers) and four dietary treatments (each based on 550 g forage : 450 g concentrate/kg dry matter (DM)). The four dietary treatments were assigned according to a 2×2 factorial design where the control treatment contained rapeseed meal as the main protein source, which was replaced either with nitrate (21.5 g nitrate/kg DM); maize distillers dark grains (MDDG, which increased diet ether extract from 24 to 37 g/kg DM) or both nitrate and MDDG. Steers (n=20/dietary treatment) were allocated to each of the four treatments in equal numbers of each breed with feed offered ad libitum. After 28 days adaptation to dietary treatments, individual animal intake, performance and feed efficiency were recorded for 56 days. Thereafter, CH4 emissions were measured over 13 weeks (six steers/week). Increasing dietary lipid did not adversely affect animal performance and showed no interactions with dietary nitrate. In contrast, addition of nitrate to diets resulted in poorer live-weight gain (P<0.01) and increased feed conversion ratio (P<0.05) compared with diets not containing nitrate. Daily CH4 output was lower (P<0.001) on nitrate-containing diets but increasing dietary lipid resulted in only a non-significant reduction in CH4. There were no interactions associated with CH4 emissions between dietary nitrate and lipid. Cross-bred Aberdeen Angus steers achieved greater live-weight gains (P<0.01), but had greater DM intakes (P<0.001), greater fat depth (P<0.01) and poorer residual feed intakes (P<0.01) than LIMx steers. Cross-bred Aberdeen Angus steers had higher daily CH4 outputs (P<0.001) but emitted less CH4 per kilogram DM intake than LIMx steers (P<0.05). In conclusion, inclusion of nitrate reduced CH4 emissions in growing beef cattle although the efficacy of nitrate was less than in previous work. When increased dietary lipid and nitrate inclusion were combined there was no evidence of an interaction between treatments and therefore combining different nutritional treatments to mitigate CH4 emissions could be a useful means of achieving reductions in CH4 while minimising any adverse effects.


Animal | 2017

The impact of divergent breed types and diets on methane emissions, rumen characteristics and performance of finishing beef cattle

C-A. Duthie; Marie J. Haskell; J. J. Hyslop; Anthony Waterhouse; Robert John Wallace; Rainer Roehe; J. A. Rooke

This study was undertaken to further develop our understanding of the links between breed, diet and the rumen microbial community and determine their effect on production characteristics and methane (CH4) emissions from beef cattle. The experiment was of a 2×2 factorial design, comprising two breeds (crossbred Charolais (CHX); purebred Luing (LU)) and two diets (concentrate-straw or silage-based). In total, 80 steers were used and balanced for sire within each breed, farm of origin and BW across diets. The diets (fed as total mixed rations) consisted of (g/kg dry matter (DM)) forage to concentrate ratios of either 500 : 500 (Mixed) or 79 : 921 (Concentrate). Steers were adapted to the diets over a 4-week period and performance and feed efficiency were then measured over a 56-day test period. Directly after the 56-day test, CH4 and carbon dioxide (CO2) emissions were measured (six steers/week) over a 13-week period. Compared with LU steers, CHX steers had greater average daily gain (ADG; P<0.05) and significantly (P<0.001) lower residual feed intake. Crossbred Charolais steers had superior conformation and fatness scores (P<0.001) than LU steers. Although steers consumed, on a DM basis, more Concentrate than Mixed diet (P<0.01), there were no differences between diets in either ADG or feed efficiency during the 56-day test. At slaughter, however, Concentrate-fed steers were heavier (P<0.05) and had greater carcass weights than Mixed-fed steers (P<0.001). Breed of steer did not influence CH4 production, but it was substantially lower when the Concentrate rather than Mixed diet was fed (P<0.001). Rumen fluid from Concentrate-fed steers contained greater proportions of propionic acid (P<0.001) and lower proportions of acetic acid (P<0.001), fewer archaea (P<0.01) and protozoa (P=0.09), but more Clostridium Cluster XIVa (P<0.01) and Bacteroides plus Prevotella (P<0.001) than Mixed-fed steers. When the CH4 to CO2 molar ratio was considered as a proxy method for CH4 production (g/kg DM intake), only weak relationships were found within diets. In conclusion, although feeding Concentrate and Mixed diets produced substantial differences in CH4 emissions and rumen characteristics, differences in performance were influenced more markedly by breed.

Collaboration


Dive into the J. J. Hyslop's collaboration.

Top Co-Authors

Avatar

Rainer Roehe

Scotland's Rural College

View shared research outputs
Top Co-Authors

Avatar

D. W. Ross

Scottish Agricultural College

View shared research outputs
Top Co-Authors

Avatar

G. Simm

Scottish Agricultural College

View shared research outputs
Top Co-Authors

Avatar

E. A. Navajas

Scottish Agricultural College

View shared research outputs
Top Co-Authors

Avatar

J. A. Rooke

Scotland's Rural College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dave Ross

Scotland's Rural College

View shared research outputs
Top Co-Authors

Avatar

Nest McKain

University of Aberdeen

View shared research outputs
Researchain Logo
Decentralizing Knowledge