Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Jose Corbalan is active.

Publication


Featured researches published by J. Jose Corbalan.


Chemical Research in Toxicology | 2012

Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: protective effects of fisetin.

Joanna McCarthy; Iwona Inkielewicz-Stepniak; J. Jose Corbalan; Marek W. Radomski

There is growing evidence that amorphous silica nanoparticles (SiO₂-NP) can cause an inflammatory response in the lung. We studied in vitro the effects of exposing human lung submucosal cells to SiO₂-NP of various sizes (10, 150, and 500 nm) for 2-24 h. Cell survival, reactive oxygen species (ROS), malondialdehyde (MDA) levels, cytokine production, inflammatory gene expression, and genotoxicity were measured after exposure of Calu-3 cells to 10SiO₂-NP in the presence or absence of the flavanoid fisetin and an antioxidant enzyme catalase. The exposure of Calu-3 cells to 10SiO₂-NP resulted in (1) increased cytotoxicity and cell death in a time- and concentration-dependent manner, with a lethal concentration (LC₅₀) of 9.7 μg/mL after 24 h; (2) enhanced gene expression of interleukin (IL)-6, IL-8, and matrix metalloproteinase-9; (3) a significant correlation between increases in MDA and cytotoxicity at 18 h; (4) ROS production; (5) IL-6 and IL-8 release; and (6) up-regulation of the pro-apoptotic genes, p53 and caspase-3. Cell death and inflammatory reactions were attenuated by fisetin and catalase. We observed that 150- and 500SiO₂-NP exerted no toxic effects on Calu-3 cells. In conclusion, the nanotoxicity of amorphous 10SiO₂-NP on submucosal cells is associated with inflammation, the release of ROS leading to apoptosis, and decreased cell survival. The nanotoxic effects of 10SiO₂-NP can be decreased by fisetin and catalase treatment, implicating oxidative stress in this injury.


International Journal of Nanomedicine | 2011

Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects.

J. Jose Corbalan; Carlos Medina; Adam M. Jacoby; Tadeusz Malinski; Marek W. Radomski

Background The purpose of this study was to investigate the mechanism of noxious effects of amorphous silica nanoparticles on human endothelial cells. Methods Nanoparticle uptake was examined by transmission electron microscopy. Electrochemical nanosensors were used to measure the nitric oxide (NO) and peroxynitrite (ONOO−) released by a single cell upon nanoparticle stimulation. The downstream inflammatory effects were measured by an enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, and flow cytometry, and cytotoxicity was measured by lactate dehydrogenase assay. Results We found that the silica nanoparticles penetrated the plasma membrane and rapidly stimulated release of cytoprotective NO and, to a greater extent, production of cytotoxic ONOO−. The low [NO]/[ONOO−] ratio indicated increased nitroxidative/oxidative stress and correlated closely with endothelial inflammation and necrosis. This imbalance was associated with nuclear factor κB activation, upregulation of key inflammatory factors, and cell death. These effects were observed in a nanoparticle size-dependent and concentration-dependent manner. Conclusion The [NO]/[ONOO−] imbalance induced by amorphous silica nanoparticles indicates a potentially deleterious effect of silica nanoparticles on vascular endothelium.


Carcinogenesis | 2014

Mechanisms of platelet-stimulated colon cancer invasion: role of clusterin and thrombospondin 1 in regulation of the P38MAPK-MMP-9 pathway

Aneta Radziwon-Balicka; Maria Jose Santos-Martinez; J. Jose Corbalan; Shane O’Sullivan; Achim Treumann; John F. Gilmer; Marek W. Radomski; Carlos Medina

Platelets have been implicated in colon cancer metastasis and prognosis but the underlying molecular mechanisms remain unclear. We evaluated the role of the different mitogen-activated protein kinase (MAPK) pathways in platelet-stimulated matrix metalloproteinase-9 (MMP-9) generation and colon cancer invasion. In addition, proteins released during platelet-tumour cell interactions were studied. For this purpose, interactions of Caco-2 and HT29 cells with platelets were studied using scanning electron microscopy, aggregometry, flow cytometry and cell invasion chambers. Quantitative PCR and zymography were used to study MMP-9 gene expression and activity, respectively, whereas western blot was used to study p38MAPK. Finally, the origin of proteins during platelet-cancer cell interactions was investigated using stable isotope labelling by amino acids in cell culture (SILAC)-based proteomics. We found that platelets promoted p38MAPK phosphorylation and MMP-9 up-regulation in both cell lines, with the subsequent cell-invasion-promoting effects. Pharmacological inhibition of p38MAPK led to a significant down-regulation of MMP-9 and colon cancer cell invasiveness. Also, p38MAPK-small interfering RNA abolished the induction of platelet-stimulated MMP-9. SILAC experiments demonstrated that thrombospondin 1 (TSP1) was released mainly from platelets and clusterin by both platelets and cancer cells. Finally, inhibition of TSP1 and clusterin abolished p38MAPK phosphorylation, MMP-9 activity and platelet-stimulated colon cancer invasion. Our results indicate that platelet-secreted TSP1 and clusterin promote the signal regulation of MMP-9 in platelet-induced colonic cancer invasion via a P38MAPK-regulated pathway. These findings are relevant to the development of therapeutic approaches to preventing and reducing tumour cell metastasis induced by colon adenocarcinoma.


International Journal of Nanomedicine | 2012

Amorphous silica nanoparticles aggregate human platelets: potential implications for vascular homeostasis

J. Jose Corbalan; Carlos Medina; Adam M. Jacoby; Tadeusz Malinski; Marek W. Radomski

Background Amorphous silica nanoparticles (SiNP) can be used in medical technologies and other industries leading to human exposure. However, an increased number of studies indicate that this exposure may result in cardiovascular inflammation and damage. A high ratio of nitric oxide to peroxynitrite concentrations ([NO]/[ONOO−]) is crucial for cardiovascular homeostasis and platelet hemostasis. Therefore, we studied the influence of SiNP on the platelet [NO]/[ONOO−] balance and platelet aggregation. Methods Nanoparticle–platelet interaction was examined using transmission electron microscopy. Electrochemical nanosensors were used to measure the levels of NO and ONOO− released by platelets upon nanoparticle stimulation. Platelet aggregation was studied using light aggregometry, flow cytometry, and phase contrast microscopy. Results Amorphous SiNP induced NO release from platelets followed by a massive stimulation of ONOO− leading to an unfavorably low [NO]/[ONOO−] ratio. In addition, SiNP induced an upregulation of selectin P expression and glycoprotein IIb/IIIa activation on the platelet surface membrane, and led to platelet aggregation via adenosine diphosphate and matrix metalloproteinase 2-dependent mechanisms. Importantly, all the effects on platelet aggregation were inversely proportional to nanoparticle size. Conclusions The exposure of platelets to amorphous SiNP induces a critically low [NO]/[ONOO−] ratio leading to platelet aggregation. These findings provide new insights into the pharmacological profile of SiNP in platelets.


British Journal of Clinical Pharmacology | 2012

Effects of angiotensin receptor blockers on endothelial nitric oxide release: the role of eNOS variants

R. Preston Mason; Robert F. Jacob; Ruslan Kubant; Adam M. Jacoby; Febee R. Louka; J. Jose Corbalan; Tadeusz Malinski

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Angiotensin II receptor blockers improve endothelial cell-dependent vasodilation in patients with hypertension through suppression of angiotensin II type 1 receptors but may have additional and differential effects on endothelial nitric oxide synthase (eNOS) function. WHAT THIS STUDY ADDS • The key finding from this study is that angiotensin II receptor blockers (ARBs) differentially enhanced nitric oxide (NO) release in a manner influenced by certain genetic variants of eNOS. This finding provides new insights into the effects of ARBs on endothelial cell-dependent vasodilation and eNOS function that are of high importance in vascular medicine and clinical pharmacology. AIM Angiotensin II receptor blockers (ARBs) improve endothelial cell (EC)-dependent vasodilation in patients with hypertension through suppression of angiotensin II type 1 receptors but may have additional and differential effects on endothelial nitric oxide (NO) synthase (eNOS) function. To investigate this question, we tested the effects of various ARBs on NO release in ECs from multiple donors, including those with eNOS genetic variants linked to higher cardiovascular risk. METHODS The effects of ARBs (losartan, olmesartan, telmisartan, valsartan), at 1 µm, on NO release were measured with nanosensors in human umbilical vein ECs obtained from 18 donors. NO release was stimulated with calcium ionophore (1 µm) and its maximal concentration was correlated with eNOS variants. The eNOS variants were determined by a single nucleotide polymorphism in the promoter region (T-786C) and in the exon 7 (G894T), linked to changes in NO metabolism. RESULTS All of the ARBs caused an increase in NO release as compared with untreated samples (P < 0.01, n= 4-5 in all eNOS variants). However, maximal NO production was differentially influenced by eNOS genotype. Olmesartan increased maximal NO release by 30%, which was significantly greater (P < 0.01, n= 4-5 in all eNOS variants) than increases observed with other ARBs. CONCLUSIONS The ARBs differentially enhanced NO release in ECs in a manner influenced by eNOS single nucleotide polymorphisms. These findings provide new insights into the effects of ARBs on EC-dependent vasodilation and eNOS function.


American Journal of Hypertension | 2014

Amlodipine increased endothelial nitric oxide and decreased nitroxidative stress disproportionately to blood pressure changes.

R. Preston Mason; Robert F. Jacob; J. Jose Corbalan; Roman Kaliszan; Tadeusz Malinski

BACKGROUND Clinical trials have shown that amlodipine reduces cardiovascular events at a rate that is not predicted by changes in brachial arterial pressure alone. These findings may be explained, in part, by the pleiotropic effects of amlodipine on endothelial cell (EC) function. In this study, we elucidated the effect of amlodipine on nitric oxide (NO) bioavailability and cytotoxic peroxynitrite (ONOO(-)) and blood pressure (BP). METHODS Spontaneously hypertensive rats (SHRs) were treated with vehicle or amlodipine (5 mg/kg/day) for 8 weeks and compared with untreated, baseline rats. NO and ONOO(-) release from aortic and glomerular ECs were measured ex vivo using amperometric nanosensors following maximal stimulation with calcium ionophore. BP was measured using the tail-cuff method. RESULTS As compared with baseline, vehicle treatment had reduced aortic endothelial NO release from 157 ± 11 nM to 55 ± 6 nM and increased ONOO(-) from 69 ± 7 nM to 156 ± 19 nM. The NO/ONOO(-) ratio, a comprehensive measurement of eNOS function, decreased from 2.3 ± 0.3 to 0.3 ± 0.1. Compared with vehicle, amlodipine treatment restored NO to 101 ± 3 nM, decreased ONOO(-) to 50 ± 4 nM, and increased the NO/ONOO(-) ratio to 2.0 ± 0.2, a level similar to baseline. Similar changes were observed for glomerular ECs. Mean arterial blood pressure increased from 149 ± 3 mm Hg (baseline) to 174 ± 1 mm Hg (vehicle). Amlodipine slightly, but significantly, decreased mean arterial blood pressure to 167 ± 3 mm Hg vs. vehicle treatment. CONCLUSIONS Amlodipine increased NO bioavailability and decreased nitroxidative stress in SHRs with EC dysfunction disproportionately to BP changes. These direct, vascular effects of amlodipine on EC function may contribute to reduced risk for atherothrombotic events as observed in clinical trials.


Journal of Biomedical Nanotechnology | 2014

Pegylation increases platelet biocompatibility of gold nanoparticles.

Maria Jose Santos-Martinez; Kamil Rahme; J. Jose Corbalan; Colm C. Faulkner; Justin D. Holmes; Lidia Tajber; Carlos Medina; Marek W. Radomski


BMC Clinical Pharmacology | 2013

The favorable kinetics and balance of nebivolol-stimulated nitric oxide and peroxynitrite release in human endothelial cells

R. Preston Mason; Robert F. Jacob; J. Jose Corbalan; Damian Szczesny; Kinga Matysiak; Tadeusz Malinski


Journal of Physiology and Pharmacology | 2015

Atorvastatin enhanced nitric oxide release and reduced blood pressure, nitroxidative stress and rantes levels in hypertensive rats with diabetes.

Richard Preston Mason; J. Jose Corbalan; Jacob Rf; Hazem Dawoud; Tadeusz Malinski


Journal of Clinical Lipidology | 2014

Combination Eicosapentaenoic Acid and Statin Treatment Reversed Endothelial Dysfunction in HUVECs Exposed to Oxidized LDL

R. Preston Mason; Robert F. Jacob; J. Jose Corbalan; Tadeusz Malinski

Collaboration


Dive into the J. Jose Corbalan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Preston Mason

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kamil Rahme

Notre Dame University – Louaize

View shared research outputs
Top Co-Authors

Avatar

Justin D. Holmes

Tyndall National Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge