Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert F. Jacob is active.

Publication


Featured researches published by Robert F. Jacob.


Circulation | 2005

Nebivolol Reduces Nitroxidative Stress and Restores Nitric Oxide Bioavailability in Endothelium of Black Americans

R. Preston Mason; Leszek Kalinowski; Robert F. Jacob; Adam M. Jacoby; Tadeusz Malinski

Background— Alterations in endothelial function may contribute to increased susceptibility of black Americans to cardiovascular disease. The ability to pharmacologically reverse endothelial dysfunction in blacks was tested with nebivolol, a &bgr;1-selective agent with vasodilating and antioxidant properties. Methods and Results— The effects of nebivolol on endothelial nitric oxide (NO), superoxide (O2−), and peroxynitrite concentration (ONOO−) release were studied in human umbilical vein endothelial cells and iliac artery endothelial cells isolated from age-matched black and white donors. Kinetics and concentrations of NO/O2−/ONOO− were measured simultaneously with nanosensors from single cells and shown to have significant interracial differences. The rate of NO release was ≈5 times slower in blacks than in whites (94 versus 505 nmol · L−1 · s−1), whereas the rates of release were faster by ≈2 times for O2− and ≈4 times for ONOO− (22.1 versus 9.4 nmol · L−1 · s−1 for O2− and 810 versus 209 nmol · L−1 · s−1 for ONOO−). Pretreatment with 1.0 to 5.0 &mgr;mol/L nebivolol restored NO bioavailability in endothelial cells from black donors with concurrent reductions in O2− and ONOO− release, similar to levels in the endothelium of whites. The effects of nebivolol were dose-dependent and not observed with atenolol; similar effects were observed with apocynin, an NAD(P)H oxidase inhibitor. Conclusions— Reduced endothelial NO bioavailability in American blacks is mainly due to excessive O2− and ONOO− generation by NAD(P)H and uncoupled endothelial NO synthase. Nebivolol decreased O2− and ONOO− concentrations and restored NO bioavailability in blacks to the level recorded in cells from whites, independently of &bgr;1-selective blockade.


Circulation | 2004

Effects of HMG-CoA Reductase Inhibitors on Endothelial Function Role of Microdomains and Oxidative Stress

R. Preston Mason; Mary F. Walter; Robert F. Jacob

Certain pleiotropic activities reported for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are related to reductions in cellular cholesterol biosynthesis and isoprenoid levels. In endothelial cells, these metabolic changes contribute to favorable effects on nitric oxide (NO) bioavailability. Given the essential role of NO in preserving vascular structure and function, this effect of statins is of considerable therapeutic importance. Statins have been demonstrated to restore endothelial NO production by several mechanisms, including upregulating endothelial NO synthase (eNOS) protein expression and blocking formation of reactive oxygen species. In this article, we will discuss additional ways in which statins restore endothelial NO production and improve endothelial function. (1) Statins modulate membrane microdomain formation, resulting in reduced expression of proteins that specifically inhibit eNOS activation. (2) Statins reduce sterol biosynthesis, thus interfering with the formation of pathologic microdomains, including cholesterol crystalline structures. This observation has important implications for plaque stabilization, as these microdomains contribute to cholesterol crystal formation and endothelial apoptosis. Finally, (3) statins improve endothelial function by interfering with oxidative stress pathways through both enzymatic and nonenzymatic mechanisms. The relationships between membrane microdomains, cholesterol biosynthesis, and endothelial function will be discussed.


American Journal of Cardiology | 2008

Biologic Activity of Carotenoids Related to Distinct Membrane Physicochemical Interactions

Hyesun P. McNulty; Robert F. Jacob; R. Preston Mason

Carotenoids are naturally occurring organic pigments that are believed to have therapeutic benefit in treating cardiovascular disease (CVD) because of their antioxidant properties. However, prospective randomized trials have failed to demonstrate a consistent benefit for the carotenoid beta-carotene in patients at risk for CVD. The basis for this apparent paradox is not well understood but may be attributed to the distinct antioxidant properties of various carotenoids resulting from their structure-dependent physicochemical interactions with biologic membranes. To test this hypothesis, we measured the effects of astaxanthin, zeaxanthin, lutein, beta-carotene, and lycopene on lipid peroxidation using model membranes enriched with polyunsaturated fatty acids. The correlative effects of these compounds on membrane structure were determined using small-angle x-ray diffraction approaches. The nonpolar carotenoids, lycopene and beta-carotene, disordered the membrane bilayer and stimulated membrane lipid peroxidation (>85% increase in lipid hydroperoxide levels), whereas astaxanthin (a polar carotenoid) preserved membrane structure and exhibited significant antioxidant activity (>40% decrease in lipid hydroperoxide levels). These results suggest that the antioxidant potential of carotenoids is dependent on their distinct membrane lipid interactions. This relation of structure and function may explain the differences in biologic activity reported for various carotenoids, with important therapeutic implications.


Journal of Cardiovascular Pharmacology | 2006

Effect of nebivolol on endothelial nitric oxide and peroxynitrite release in hypertensive animals : Role of antioxidant activity

R. Preston Mason; Ruslan Kubant; Robert F. Jacob; Mary F. Walter; Bohdan Boychuk; Tadeusz Malinski

We tested the activity of nebivolol, a β1-selective blocker with respect to nitric oxide (NO) and peroxynitrite (ONOO−) generation in the endothelium of normotensive Wistar Kyoto (WKY rats) and spontaneously hypertensive rats (SHR). The endothelial effects of nebivolol and its 2 optical enantiomers were correlated with its antioxidant activity and compared to another β-blocker, atenolol, and 2 agonists of nitric oxide synthase (eNOS), calcium ionophore (CI) and acetylcholine (ACh). The effects of nebivolol on the bioavailability of NO and ONOO−, indicators of endothelial function and dysfunction, respectively, were measured in vitro using nanosensors placed in mesenteric arteries. Compared with WKY rats, treatment of SHR vessels either with ACh (1 μmol/L) or CI (1 μmol/L) showed marked deficiencies (>40%, P < 0.01) in bioavailable NO concomitant with increased ONOO− levels (>50%, P < 0.01). The [NO]/[ONOO−] ratio measured after stimulation with CI was 2.77 ± 0.05 in WKY rats and much lower (1.14 ± 0.11) in SHR indicating significant eNOS uncoupling and endothelial dysfunction in hypertensive animals. Treatment with nebivolol (10 μmol/L) inhibited eNOS uncoupling and reduced endothelial dysfunction in SHR, as evidenced by an increase in the [NO]/[ONOO−] ratio to 3.09 ± 0.04. The basis for nebivolol activity is attributed to its unique membrane interactions as determined by small-angle x-ray diffraction, as well as its antioxidant activity at nanomolar to micromolar levels. The antioxidant effects of nebivolol and its enantiomers were not reproduced by atenolol. These results demonstrate that nebivolol inhibits endothelial dysfunction through a potent antioxidant mechanism attributed to its physicochemical interactions with the membrane, independent of β1-blockade activity.


Journal of Biological Chemistry | 2006

Active Metabolite of Atorvastatin Inhibits Membrane Cholesterol Domain Formation by an Antioxidant Mechanism

R. Preston Mason; Mary F. Walter; Charles A. Day; Robert F. Jacob

The advanced atherosclerotic lesion is characterized by the formation of microscopic cholesterol crystals that contribute to mechanisms of inflammation and apoptotic cell death. These crystals develop from membrane cholesterol domains, a process that is accelerated under conditions of hyperlipidemia and oxidative stress. In this study, the comparative effects of hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors (statins) on oxidative stress-induced cholesterol domain formation were tested in model membranes containing physiologic levels of cholesterol using small angle x-ray diffraction approaches. In the absence of HMG-CoA reductase, only the atorvastatin active o-hydroxy metabolite (ATM) blocked membrane cholesterol domain formation as a function of oxidative stress. This effect of ATM is attributed to electron donation and proton stabilization mechanisms associated with its phenoxy group located in the membrane hydrocarbon core. ATM inhibited lipid peroxidation in human low density lipoprotein and phospholipid vesicles in a dose-dependent manner, unlike its parent and other statins (pravastatin, rosuvastatin, simvastatin). These findings indicate an atheroprotective effect of ATM on membrane lipid organization through a potent antioxidant mechanism.


Journal of Biological Chemistry | 1999

Direct Evidence for Immiscible Cholesterol Domains in Human Ocular Lens Fiber Cell Plasma Membranes

Robert F. Jacob; Richard J. Cenedella; Mason Rp

The molecular structure of human ocular lens fiber cell plasma membranes was examined directly using small angle x-ray diffraction approaches. A distinct biochemical feature of these membranes is their high relative levels of free cholesterol; the mole ratio of cholesterol to phospholipid (C/P) measured in these membranes ranges from 1 to 4. The organization of cholesterol in this membrane system is not well understood, however. In this study, the structure of plasma membrane samples isolated from nuclear (3.3 C/P) and cortical (2.4 C/P) regions of human lenses was evaluated with x-ray diffraction approaches. Meridional diffraction patterns obtained from the oriented membrane samples demonstrated the presence of an immiscible cholesterol domain with a unit cell periodicity of 34.0 Å, consistent with a cholesterol monohydrate bilayer. The dimensions of the sterol-rich domains remained constant over a broad range of temperatures (5–20 °C) and relative humidity levels (31–97%). In contrast, dimensions of the surrounding sterol-poor phase were significantly affected by experimental conditions. Similar structural features were observed in membranes reconstituted from fiber cell plasma membrane lipid extracts. The results of this study indicate that the lens fiber cell plasma membrane is a complex structure consisting of separate sterol-rich and -poor domains. Maintenance of these separate domains may be required for the normal function of lens fiber cell plasma membrane and may interfere with the cataractogenic aggregation of soluble lens proteins at the membrane surface.


Journal of Cardiovascular Pharmacology | 2006

Rofecoxib increases susceptibility of human LDL and membrane lipids to oxidative damage: A mechanism of cardiotoxicity

R. Preston Mason; Mary F. Walter; Hyesun P. McNulty; Samuel F. Lockwood; Jungsoo Byun; Charles A. Day; Robert F. Jacob

Clinical investigations have demonstrated a relationship between the extended use of rofecoxib and the increased risk for atherothrombotic events. This has led to the removal of rofecoxib from the market and concern over the cardiovascular safety of other cyclooxygenase (COX)-2 selective agents. Experimental findings from independent laboratories now indicate that the cardiotoxicity of rofecoxib may not be a class effect but because of its intrinsic chemical properties. Specifically, rofecoxib has been shown to increase the susceptibility of human low-density lipoprotein and cellular membrane lipids to oxidative modification, a contributing factor to plaque instability and thrombus formation. Independently of COX-2 inhibition, rofecoxib also promoted the nonenzymatic formation of isoprostanes and reactive aldehydes from biologic lipids. The basis for these observations is that rofecoxib alters lipid structure and readily forms a reactive maleic anhydride in the presence of oxygen. By contrast, other selective (celecoxib, valdecoxib) and nonselective (naproxen, diclofenac) inhibitors did not influence rates of low-density lipoprotein and membrane lipid oxidation. We have now further confirmed these findings by demonstrating that the prooxidant activity of rofecoxib can be blocked by the potent antioxidant astaxanthin in homochiral form (all-trans 3S, 3′S). These findings provide a mechanistic rationale for differences in cardiovascular risk among COX-selective inhibitors because of their intrinsic physicochemical properties.


Journal of Biological Chemistry | 2007

Regulation of the gating of BKCa channel by lipid bilayer thickness

Chunbo Yuan; Robert J. O'Connell; Robert F. Jacob; R. Preston Mason; Steven N. Treistman

Transmembrane segments of ion channels tend to match the hydrophobic thickness of lipid bilayers to minimize mismatch energy and to maintain their proper organization and function. To probe how ion channels respond to mismatch with lipid bilayers of different thicknesses, we examined the single channel activities of BKCa (hSlo α-subunit) channels in planar bilayers of binary mixtures of DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) with phosphatidylcholines (PCs) of varying chain lengths, including PC 14:1, PC 18:1, PC 22:1, PC 24:1, and with porcine brain sphingomyelin. Bilayer thickness and structure was measured with small angle x-ray diffraction and atomic force microscopy. The open probability (Po) of the BKCa channel was finely tuned by bilayer thickness, first decreasing with increases in bilayer thickness from PC 14:1 to PC 22:1 and then increasing from PC 22:1 to PC 24:1 and to porcine brain sphingomyelin. Single channel kinetic analyses revealed that the mean open time of the channel increased monotonically with bilayer thickness and, therefore, could not account for the biphasic changes in Po. The mean closed time increased with bilayer thickness from PC 14:1 up to PC 22:1 and then decreased with further increases in bilayer thickness to PC 24:1 and sphingomyelin, correlating with changes in Po. This is consistent with the proposition that bilayer thickness affects channel activity mainly through altering the stability of the closed state. We suggest a simple mechanical model that combines forces of lateral stress within the lipid bilayer with local hydrophobic mismatch between lipids and the protein to account for the biphasic modulation of BKCa gating.


Journal of Cardiovascular Pharmacology | 2012

Dipeptidyl peptidase-4 inhibition with saxagliptin enhanced nitric oxide release and reduced blood pressure and sICAM-1 levels in hypertensive rats.

Mason Rp; Robert F. Jacob; Ruslan Kubant; Ciszewski A; Corbalan Jj; Tadeusz Malinski

Abstract: Most patients with diabetes also have hypertension, a risk factor associated with atherothrombotic disease and characterized by endothelial cell (EC) dysfunction and loss of nitric oxide (NO) bioavailability. Recent studies suggest a possible antihypertensive effect with dipeptidyl peptidase-4 (DPP4) inhibition; however, the underlying mechanism is not understood. In this study, we tested the effects of the DPP4 inhibitor, saxagliptin, on EC function, blood pressure, and soluble intercellular adhesion molecule 1 (sICAM-1) levels in hypertensive rats. Spontaneously hypertensive rats were treated with vehicle or saxagliptin (10 mg·kg−1·day−1) for 8 weeks. NO and peroxynitrite (ONOO−) release from aortic and glomerular ECs was stimulated with calcium ionophore and measured using electrochemical nanosensor technology. Changes in EC function were correlated with fasting glucose levels. Saxagliptin treatment was observed to increase aortic and glomerular NO release by 22% (P < 0.001) and 23% (P < 0.001), respectively, with comparable reductions in ONOO− levels; the NO/ONOO− ratio increased by >50% in both EC types (P < 0.001) as compared with vehicle. Saxagliptin also reduced mean arterial pressure from 170 ± 10 to 158 ± 10 mm Hg (P < 0.001) and decreased sICAM-1 levels by 37% (P < 0.01). The results of this study suggest that DPP4 inhibition reduces blood pressure and inflammation in hypertensive rats while increasing NO bioavailability.


Journal of Biological Chemistry | 2001

Evidence for Distinct Cholesterol Domains in Fiber Cell Membranes from Cataractous Human Lenses

Robert F. Jacob; Richard J. Cenedella; R. Preston Mason

Previous studies in our laboratory have provided direct evidence for the existence of distinct cholesterol domains within the plasma membranes of human ocular lens fiber cells. The fiber cell plasma membrane is unique in that it contains unusually high concentrations of cholesterol, with cholesterol to phospholipid (C/P) mole ratios ranging from 1 to 4. Since membrane cholesterol content is disturbed in the development of cataracts, it was hypothesized that perturbation of cholesterol domain structure occurs in cataracts. In this study, fiber cell plasma membranes were isolated from both normal (control) and cataractous lenses and assayed for cholesterol and phospholipid. Control and cataractous whole lens membranes had C/P mole ratios of 3.1 and 1.7, respectively. Small angle x-ray diffraction approaches were used to directly examine the structural organization of the cataractous lens plasma membrane versus control. Both normal and cataractous oriented membranes yielded meridional diffraction peaks corresponding to a unit cell periodicity of 34.0 Å, consistent with the presence of immiscible cholesterol domains. However, comparison of diffraction patterns indicated that cataractous lens membranes contained more pronounced and better defined cholesterol domains than controls, over a broad range of temperature (5–40 °C) and relative humidity (52–92%) levels. In addition, diffraction analyses of the sterol-poor regions of cataractous membranes indicated increased membrane rigidity as compared with control membranes. Modification of the membrane lipid environment, such as by oxidative insult, is believed to be one potential mechanism for the formation of highly resolved cholesterol domains despite significantly reduced cholesterol content. The results of this x-ray diffraction study provide evidence for fundamental changes in the lens fiber cell plasma membrane structure in cataracts, including the presence of more prominent and highly ordered, immiscible cholesterol domains.

Collaboration


Dive into the Robert F. Jacob's collaboration.

Top Co-Authors

Avatar

R. Preston Mason

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel C.R. Sherratt

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Yoshiko Mizuno

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge