Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Kawada is active.

Publication


Featured researches published by J. Kawada.


Nature Communications | 2014

A moiré deflectometer for antimatter

S. Aghion; O. Ahlén; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; K. Berggren; G. Bonomi; P. Bräunig; J. Bremer; R. S. Brusa; L. Cabaret; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; H. Derking; S. Di Domizio; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; P. Genova; M. Giammarchi; A. Gligorova

The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics—the moiré deflectometer—for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.


Journal of Instrumentation | 2013

A new application of emulsions to measure the gravitational force on antihydrogen

C. Amsler; A. Ariga; T. Ariga; Saverio Braccini; C. Canali; A. Ereditato; J. Kawada; M. Kimura; I. Kreslo; C. Pistillo; P. Scampoli; J. Storey

We propose to build and operate a detector based on the emulsion film technology for the measurement of the gravitational acceleration on antimatter, to be performed by the AEgIS experiment (AD6) at CERN. The goal of AEgIS is to test the weak equivalence principle with a precision of 1% on the gravitational acceleration g by measuring the vertical position of the annihilation vertex of antihydrogen atoms after their free fall while moving horizontally in a vacuum pipe. With the emulsion technology developed at the University of Bern we propose to improve the performance of AEgIS by exploiting the superior position resolution of emulsion films over other particle detectors. The idea is to use a new type of emulsion films, especially developed for applications in vacuum, to yield a spatial resolution of the order of one micron in the measurement of the sag of the antihydrogen atoms in the gravitational field. This is an order of magnitude better than what was planned in the original AEgIS proposal.


NON-NEUTRAL PLASMA PHYSICS VIII: 10th International Workshop on Non-Neutral Plasmas | 2013

AEgIS experiment commissioning at CERN

D. Krasnický; S. Aghion; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; G. Bonomi; P. Bräunig; R. S. Brusa; J. Bremer; G. Burghart; L. Cabaret; M. Caccia; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; L. Dassa; S. Di Domizio; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; P. Genova; M. Giammarchi

The AEgIS Experiment is an international collaboration based at CERN whose aim is to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the gravitational field of the Earth. Cold antihydrogen will be produced with a pulsed charge exchange reaction in a cylindrical Penning trap where antiprotons will be cooled to 100mK. The cold antihydrogen will be produced in an excited Rydberg state and subsequently formed into a beam. The deflection of the antihydrogen beam will be measured by using Moire deflectometer gratings. After being approved in late 2008, AEgIS started taking data in a commissioning phase early 2012. This report presents an overview of the AEgIS experiment, describes its current status and shows the first measurements on antiproton catching and cooling in the 5 T Penning catching trap. We will also present details on the techniques needed for the 100mK antihydrogen production, such as pulsed positronium production and its excitation with lasers.


Journal of Instrumentation | 2015

Particle tracking at cryogenic temperatures: the Fast Annihilation Cryogenic Tracking (FACT) detector for the AEgIS antimatter gravity experiment

J. Storey; S. Aghion; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; G. Bonomi; P. Bräunig; J. Bremer; R. S. Brusa; L. Cabaret; M. Caccia; R. Caravita; F. Castelli; G. Cerchiari; K. Chlouba; S. Cialdi; D. Comparat; G. Consolati; H. Derking; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; S. Gerber; M. Giammarchi; A. Gligorova; Sergei Gninenko

The AEgIS experiment is an interdisciplinary collaboration between atomic, plasma and particle physicists, with the scientific goal of performing the first precision measurement of the Earths gravitational acceleration on antimatter. The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malmberg trap and are Stark accelerated towards a moire deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is an antihydrogen detector that will be used to demonstrate the production of antihydrogen and also to measure the temperature of the anti-atoms and the creation of a beam. The operating requirements for the detector are very challenging: it must operate at close to 4 K inside a 1 T solenoid magnetic field and identify the annihilation of the antihydrogen atoms that are produced during the 1 μs period of antihydrogen production. Our solution—called the FACT detector—is based on a novel multi-layer scintillating fiber tracker with SiPM readout and off the shelf FPGA based readout system. This talk will present the design of the FACT detector and detail the operation of the detector in the context of the AEgIS experiment.


International Journal of Modern Physics: Conference Series | 2014

Measuring

D. Krasnický; S. Aghion; O. Ahlén; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; K. Berggren; G. Bonomi; P. Bräunig; J. Bremer; R. S. Brusa; L. Cabaret; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; H. Derking; S. Di Domizio; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; P. Genova; M. Giammarchi

experiments main goal is to measure the local gravitational acceleration of antihydrogen and thus perform a direct test of the weak equivalence principle with antimatter. In the first phase of the experiment the aim is to measure with 1% relative precision. This paper presents the antihydrogen production method and a description of some components of the experiment, which are necessary for the gravity measurement. Current status of the experimental apparatus is presented and recent commissioning results with antiprotons are outlined. In conclusion we discuss the short-term goals of the collaboration that will pave the way for the first gravity measurement in the near future.


2nd International Workshop on Antimatter and Gravity (WAG 2013) | 2014

\bar{g}

C. Amsler; A. Ariga; Tomoko Ariga; A. Ereditato; J. Kawada; M. Kimura; C. Pistillo; P. Scampoli; J. Storey

experiments main goal is to measure the local gravitational acceleration of antihydrogen and thus perform a direct test of the weak equivalence principle with antimatter. In the first phase of the experiment the aim is to measure with 1% relative precision. This paper presents the antihydrogen production method and a description of some components of the experiment, which are necessary for the gravity measurement. Current status of the experimental apparatus is presented and recent commissioning results with antiprotons are outlined. In conclusion we discuss the short-term goals of the collaboration that will pave the way for the first gravity measurement in the near future.


Journal of Instrumentation | 2014

with

P. Scampoli; S. Aghion; O. Ahlén; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; K. Berggren; G. Bonomi; P. Bräunig; J. Bremere; R. S. Brusa; L. Cabaret; M. Caccia; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; H. Derking; S. Domizio; Lea Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; P. Genova

For the first time the AEgIS (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) experiment will measure the Earths local gravitational acceleration g on antimatter through the evaluation of the vertical displacement of an antihydrogen horizontal beam. This will be a model independent test of the Weak Equivalence Principle at the base of the general relativity. The initial goal of a g measurement with a relative uncertainty of 1% will be achieved with less than 1000 detected antihydrogens, provided that their vertical position could be determined with a precision of a few micrometers. An emulsion based detector is very suitable for this purpose featuring an intrinsic sub-micrometric spatial resolution. Nevertheless, the AEgIS experiment requires unprecedented operational conditions for this type of detector, namely vacuum environment and very low temperature. An intense R&D activity is presently going on to optimize the detector for the AEgIS experimental requirements with rather encouraging results.


Journal of Instrumentation | 2017

{\rm AE\bar{g}IS}

S. Aghion; C. Amsler; A. Ariga; T. Ariga; G. Bonomi; P. Bräunig; R. S. Brusa; L. Cabaret; M. Caccia; R. Caravita; F. Castelli; G. Cerchiari; D. Comparat; G. Consolati; A. Demetrio; L. Di Noto; M. Doser; A. Ereditato; C. Evans; R. Ferragut; J. Fesel; A. Fontana; S. Gerber; M. Giammarchi; A. Gligorova; F. Guatieri; S. Haider; A. Hinterberger; H. Holmestad; T. Huse

The characteristics of low energy antiproton annihilations on nuclei (e.g. hadronization and product multiplicities) are not well known, and Monte Carlo simulation packages that use different models provide different descriptions of the annihilation events. In this study, we measured the particle multiplicities resulting from antiproton annihilations on nuclei. The results were compared with predictions obtained using different models in the simulation tools GEANT4 and FLUKA. For this study, we exposed thin targets (Cu, Ag and Au) to a very low energy antiproton beam from CERNs Antiproton Decelerator, exploiting the secondary beamline available in the AEgIS experimental zone. The antiproton annihilation products were detected using emulsion films developed at the Laboratory of High Energy Physics in Bern, where they were analysed at the automatic microscope facility. The fragment multiplicity measured in this study is in good agreement with results obtained with FLUKA simulations for both minimally and heavily ionizing particles.


4TH SYMPOSIUM ON PROSPECTS IN THE PHYSICS OF DISCRETE SYMMETRIES (DISCRETE2014) | 2015

, progress and perspectives

M. Kimura; S. Aghion; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; G. Bonomi; P. Bräunig; J. Bremer; R. S. Brusa; L. Cabaret; M. Caccia; R. Caravita; F. Castelli; G. Cerchiari; K. Chlouba; S. Cialdi; D. Comparat; G. Consolati; A. Demetrio; H. Derking; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; S. Gerber; M. Giammarchi; A. Gligorova

The goal of the AEgIS experiment is to measure the gravitational acceleration of antihydrogen – the simplest atom consisting entirely of antimatter – with the ultimate precision of 1%. We plan to verify the Weak Equivalence Principle (WEP), one of the fundamental laws of nature, with an antimatter beam. The experiment consists of a positron accumulator, an antiproton trap and a Stark accelerator in a solenoidal magnetic field to form and accelerate a pulsed beam of antihydrogen atoms towards a free-fall detector. The antihydrogen beam passes through a moir e deflectometer to measure the vertical displacement due to the gravitational force. A position and time sensitive hybrid detector registers the annihilation points of the antihydrogen atoms and their time-of-flight. The detection principle has been successfully tested with antiprotons and a miniature moir e deflectometer coupled to a nuclear emulsion detector.


International Journal of Modern Physics: Conference Series | 2014

Measuring gbar with AEgIS, progress and perspectives

T. Ariga; S. Aghion; O. Ahlén; C. Amsler; A. Ariga; A. S. Belov; Karl Berggren; G. Bonomi; P. Bräunig; J. Bremer; R. S. Brusa; L. Cabaret; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; H. Derking; S. Di Domizio; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; P. Genova; M. Giammarchi; A. Gligorova

The motivation of the AEgIS experiment is to test the universality of free fall with antimatter. The goal is to reach a relative uncertainty of 1% for the measurement of the earths gravitational acceleration

Collaboration


Dive into the J. Kawada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Ferragut

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

S. Aghion

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

A. Fontana

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

G. Bonomi

University of Brescia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge