Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Kent Wallace is active.

Publication


Featured researches published by J. Kent Wallace.


Proceedings of the National Academy of Sciences of the United States of America | 2014

First light of the Gemini Planet Imager

Bruce A. Macintosh; James R. Graham; Patrick Ingraham; Quinn Konopacky; Christian Marois; Marshall D. Perrin; Lisa A. Poyneer; Brian J. Bauman; Travis Barman; Adam Burrows; Andrew Cardwell; Jeffrey K. Chilcote; Robert J. De Rosa; Daren Dillon; René Doyon; Jennifer Dunn; Darren Erikson; Michael P. Fitzgerald; Donald Gavel; Stephen J. Goodsell; Markus Hartung; Pascale Hibon; Paul Kalas; James E. Larkin; Jérôme Maire; Franck Marchis; Mark S. Marley; James McBride; Max Millar-Blanchaer; Katie M. Morzinski

Bruce Macintosh a , James R. Graham , Patrick Ingraham b , Quinn Konopacky , Christian Marois , Marshall Perrin f , Lisa Poyneer a , Brian Bauman a , Travis Barman , Adam Burrows , Andrew Cardwell , Jeffrey Chilcote j , Robert J. De Rosa , Daren Dillon , Rene Doyon , Jennifer Dunn e , Darren Erikson e , Michael Fitzgerald j , Donald Gavel l , Stephen Goodsell i , Markus Hartung i , Pascale Hibon i , Paul G. Kalas c , James Larkin j , Jerome Maire d , Franck Marchis , Mark Marley , James McBride c , Max Millar-Blanchaer d , Katie Morzinski , Andew Norton l B. R. Oppenheimer , Dave Palmer a , Jennifer Patience k , Laurent Pueyo f , Fredrik Rantakyro i , Naru Sadakuni i , Leslie Saddlemyer e , Dmitry Savransky , Andrew Serio i , Remi Soummer f Anand Sivaramakrishnan f , q Inseok Song , Sandrine Thomas , J. Kent Wallace , Sloane Wiktorowicz l , and Schuyler Wolff vSignificance Direct detection—spatially resolving the light of a planet from the light of its parent star—is an important technique for characterizing exoplanets. It allows observations of giant exoplanets in locations like those in our solar system, inaccessible by other methods. The Gemini Planet Imager (GPI) is a new instrument for the Gemini South telescope. Designed and optimized only for high-contrast imaging, it incorporates advanced adaptive optics, diffraction control, a near-infrared spectrograph, and an imaging polarimeter. During first-light scientific observations in November 2013, GPI achieved contrast performance that is an order of magnitude better than conventional adaptive optics imagers. The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0−0.4+0.8 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.


Proceedings of SPIE | 2008

The Gemini Planet Imager: From Science to Design to Construction

Bruce A. Macintosh; James R. Graham; David Palmer; René Doyon; Jennifer Dunn; Donald Gavel; James E. Larkin; Ben R. Oppenheimer; Les Saddlemyer; Anand Sivaramakrishnan; J. Kent Wallace; Brian J. Bauman; Darren Erickson; Christian Marois; Lisa A. Poyneer; Rémi Soummer

The Gemini Planet Imager (GPI) is a facility instrument under construction for the 8-m Gemini South telescope. It combines a 1500 subaperture AO system using a MEMS deformable mirror, an apodized-pupil Lyot coronagraph, a high-accuracy IR interferometer calibration system, and a near-infrared integral field spectrograph to allow detection and characterization of self-luminous extrasolar planets at planet/star contrast ratios of 10-7. I will discuss the evolution from science requirements through modeling to the final detailed design, provide an overview of the subsystems and show models of the instruments predicted performance.


Proceedings of SPIE | 2006

The Gemini Planet Imager

Bruce A. Macintosh; James R. Graham; David Palmer; René Doyon; Donald Gavel; James E. Larkin; Ben R. Oppenheimer; Leslie Saddlemyer; J. Kent Wallace; Brian J. Bauman; Julia W. Evans; Darren Erikson; Katie M. Morzinski; D. W. Phillion; Lisa A. Poyneer; Anand Sivaramakrishnan; Rémi Soummer; Simon Thibault; Jean-Pierre Véran

The next major frontier in the study of extrasolar planets is direct imaging detection of the planets themselves. With high-order adaptive optics, careful system design, and advanced coronagraphy, it is possible for an AO system on a 8-m class telescope to achieve contrast levels of 10-7 to 10-8, sufficient to detect warm self-luminous Jovian planets in the solar neighborhood. Such direct detection is sensitive to planets inaccessible to current radial-velocity surveys and allows spectral characterization of the planets, shedding light on planet formation and the structure of other solar systems. We have begun the construction of such a system for the Gemini Observatory. Dubbed the Gemini Planet Imager (GPI), this instrument should be deployed in 2010 on the Gemini South telescope. It combines a 2000-actuator MEMS-based AO system, an apodized-pupil Lyot coronagraph, a precision infrared interferometer for real-time wavefront calibration at the nanometer level, and a infrared integral field spectrograph for detection and characterization of the target planets. GPI will be able to achieve Strehl ratios > 0.9 at 1.65 microns and to observe a broad sample of science targets with I band magnitudes less than 8. In addition to planet detection, GPI will also be capable of polarimetric imaging of circumstellar dust disks, studies of evolved stars, and high-Strehl imaging spectroscopy of bright targets. We present here an overview of the GPI instrument design, an error budget highlighting key technological challenges, and models of the system performance.


The Astrophysical Journal | 2015

β PICTORIS' INNER DISK in POLARIZED LIGHT and NEW ORBITAL PARAMETERS for β PICTORIS b

Maxwell A. Millar-Blanchaer; James R. Graham; Laurent Pueyo; Paul Kalas; Rebekah I. Dawson; Jason J. Wang; Marshall D. Perrin; Dae Sik Moon; Bruce A. Macintosh; S. Mark Ammons; Travis Barman; Andrew Cardwell; C. H. Chen; Eugene Chiang; Jeffrey K. Chilcote; Tara Cotten; Robert J. De Rosa; Zachary H. Draper; Jennifer Dunn; Gaspard Duchene; Thomas M. Esposito; Michael P. Fitzgerald; Katherine B. Follette; Stephen J. Goodsell; Alexandra Z. Greenbaum; Markus Hartung; Pascale Hibon; Sasha Hinkley; Patrick Ingraham; Rebecca Jensen-Clem

© 2015. The American Astronomical Society. All rights reserved. We present H-band observations of β Pic with the Gemini Planet Imagers (GPIs) polarimetry mode that reveal the debris disk between ∼0.″3 (6 AU) and ∼1.″7 (33 AU), while simultaneously detecting β Pic b. The polarized disk image was fit with a dust density model combined with a Henyey-Greenstein scattering phase function. The best-fit model indicates a disk inclined to the line of sight () with a position angle (PA) (slightly offset from the main outer disk, ), that extends from an inner disk radius of to well outside GPIs field of view. In addition, we present an updated orbit for β Pic b based on new astrometric measurements taken in GPIs spectroscopic mode spanning 14 months. The planet has a semimajor axis of , with an eccentricity The PA of the ascending node is offset from both the outer main disk and the inner disk seen in the GPI image. The orbital fit constrains the stellar mass of β Pic to Dynamical sculpting by β Pic b cannot easily account for the following three aspects of the inferred disk properties: (1) the modeled inner radius of the disk is farther out than expected if caused by β Pic b; (2) the mutual inclination of the inner disk and β Pic b is when it is expected to be closer to zero; and (3) the aspect ratio of the disk () is larger than expected from interactions with β Pic b or self-stirring by the disks parent bodies.


Optics Letters | 2011

Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph

Dimitri Mawet; Eugene Serabyn; J. Kent Wallace; Laurent Pueyo

The vortex coronagraph is one of the most promising coronagraphs for high-contrast imaging because of its simplicity, small inner working angle, high throughput, and clear off-axis discovery space. However, as with most coronagraphs, centrally obscured on-axis telescopes degrade contrast. Based on the remarkable ability of vortex coronagraphs to move light between the interior and exterior of pupils, we propose a method based on multiple vortices, that without sacrificing throughput, reduces the residual light leakage to (a/A)(n), with n ≥ 4, and a and A being the radii of the central obscuration and primary mirror, respectively. This method thus enables high contrasts to be reached even with an on-axis telescope.


Proceedings of SPIE | 2012

The Gemini Planet Imager: integration and status

Bruce A. Macintosh; Andre Anthony; Jennifer Atwood; Nicolas A. Barriga; Brian J. Bauman; Kris Caputa; Jeffery Chilcote; Daren Dillon; René Doyon; Jennifer Dunn; Donald Gavel; Ramon Galvez; Stephen J. Goodsell; James R. Graham; Markus Hartung; Joshua Isaacs; Dan Kerley; Quinn Konopacky; Kathleen Labrie; James E. Larkin; Jérôme Maire; Christian Marois; Max Millar-Blanchaer; Arturo Nunez; Ben R. Oppenheimer; David Palmer; John Pazder; Marshall D. Perrin; Lisa A. Poyneer; Carlos Quirez

The Gemini Planet Imager is a next-generation instrument for the direct detection and characterization of young warm exoplanets, designed to be an order of magnitude more sensitive than existing facilities. It combines a 1700-actuator adaptive optics system, an apodized-pupil Lyot coronagraph, a precision interferometric infrared wavefront sensor, and a integral field spectrograph. All hardware and software subsystems are now complete and undergoing integration and test at UC Santa Cruz. We will present test results on each subsystem and the results of end-to-end testing. In laboratory testing, GPI has achieved a raw contrast (without post-processing) of 10-6 5σ at 0.4”, and with multiwavelength speckle suppression, 2x10-7 at the same separation.


Proceedings of SPIE | 2012

Project 1640: the world's first ExAO coronagraphic hyperspectral imager for comparative planetary science

Ben R. Oppenheimer; Charles A. Beichman; Douglas Brenner; Rick Burruss; Eric Cady; Justin R. Crepp; Lynne A. Hillenbrand; Sasha Hinkley; E. R. Ligon; Thomas G. Lockhart; Ian R. Parry; Laurent Pueyo; Emily L. Rice; Lewis C. Roberts; Jennifer E. Roberts; Michael Shao; Anand Sivaramakrishnan; Rémi Soummer; Gautam Vasisht; Fred E. Vescelus; J. Kent Wallace; Chengxing Zhai; Neil Zimmerman

Project 1640, a high-contrast spectral-imaging effort involving a coordinated set of instrumentation and software, built at AMNH, JPL, Cambridge and Caltech, has been commissioned and is fully operational. This novel suite of instrumentation includes a 3388+241-actuator adaptive optics system, an optimized apodized pupil Lyot coronagraph, an integral field spectrograph, and an interferometric calibration wave front sensor. Project 1640 is the first of its kind of instrumentation, designed to image and characterize planetary systems around nearby stars, employing a variety of techniques to break the speckle-noise barrier. It is operational roughly one year before any similar project, with the goal of reaching a contrast of 10-7 at 1 arcsecond separation. We describe the instrument, highlight recent results, and document on-sky performance at the start of a 3-year, 99-night survey at the Palomar 5-m Hale telescope.


Proceedings of SPIE | 2010

The Gemini Planet Imager Calibration Wavefront Sensor Instrument

J. Kent Wallace; Rick Burruss; Randall D. Bartos; Thang Trinh; Laurent Pueyo; Santos F. Fregoso; John Angione; J. Chris Shelton

The Gemini Planet Imager is an extreme adaptive optics system that will employ an apodized-pupil coronagraph to make direct detections of faint companions of nearby stars to a contrast level of the 10-7 within a few lambda/D of the parent star. Such high contrasts from the ground require exquisite wavefront sensing and control both for the AO system as well as for the coronagraph. Un-sensed non-common path phase and amplitude errors after the wavefront sensor dichroic but before the coronagraph would lead to speckles which would ultimately limit the contrast. The calibration wavefront system for GPI will measure the complex wavefront at the system pupil before the apodizer and provide slow phase corrections to the AO system to mitigate errors that would cause a loss in contrast. The calibration wavefront sensor instrument for GPI has been built. We will describe the instrument and its performance.


The Astronomical Journal | 2016

THE ORBIT and TRANSIT PROSPECTS for β PICTORIS b CONSTRAINED with ONE MILLIARCSECOND ASTROMETRY

Jason J. Wang; James R. Graham; Laurent Pueyo; Paul Kalas; Maxwell A. Millar-Blanchaer; Jean Baptiste Ruffio; Robert J. De Rosa; S. Mark Ammons; Pauline Arriaga; Vanessa P. Bailey; Travis Barman; Joanna Bulger; Adam Burrows; Andrew Cardwell; C. H. Chen; Jeffrey K. Chilcote; Tara Cotten; Michael P. Fitzgerald; Katherine B. Follette; René Doyon; Gaspard Duchene; Alexandra Z. Greenbaum; Pascale Hibon; Li Wei Hung; Patrick Ingraham; Quinn Konopacky; James E. Larkin; Bruce A. Macintosh; Jérôme Maire; Franck Marchis

Gemini Observatory; National Science Foundation [NSF AST-1518332]; NASA [NNX15AC89G, NNX15AD95G]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]


Proceedings of SPIE | 2011

Phase-Shifting Zernike Interferometer Wavefront Sensor

J. Kent Wallace; Shanti Rao; Rebecca M. Jensen-Clemb; Gene Serabyn

The canonical Zernike phase-contrast technique transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static π/2 phase shift to the central core (~ λ/D) of the PSF which is intermediate between the input and output planes. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective. Second, the phase shift in the central core of the PSF is dynamic and or arbitrary size. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument.

Collaboration


Dive into the J. Kent Wallace's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

René Doyon

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurent Pueyo

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Pascale Hibon

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge