Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Kevin Foskett is active.

Publication


Featured researches published by J. Kevin Foskett.


Cell | 2010

Essential Regulation of Cell Bioenergetics by Constitutive InsP3 Receptor Ca2+ Transfer to Mitochondria

César Cárdenas; Russell A. Miller; Ian F. Smith; Thi Bui; Jordi Molgó; Marioly Müller; Horia Vais; King-Ho Cheung; Jun Yang; Ian Parker; Craig B. Thompson; Morris J. Birnbaum; Kenneth R. Hallows; J. Kevin Foskett

Mechanisms that regulate cellular metabolism are a fundamental requirement of all cells. Most eukaryotic cells rely on aerobic mitochondrial metabolism to generate ATP. Nevertheless, regulation of mitochondrial activity is incompletely understood. Here we identified an unexpected and essential role for constitutive InsP(3)R-mediated Ca(2+) release in maintaining cellular bioenergetics. Macroautophagy provides eukaryotes with an adaptive response to nutrient deprivation that prolongs survival. Constitutive InsP(3)R Ca(2+) signaling is required for macroautophagy suppression in cells in nutrient-replete media. In its absence, cells become metabolically compromised due to diminished mitochondrial Ca(2+) uptake. Mitochondrial uptake of InsP(3)R-released Ca(2+) is fundamentally required to provide optimal bioenergetics by providing sufficient reducing equivalents to support oxidative phosphorylation. Absence of this Ca(2+) transfer results in enhanced phosphorylation of pyruvate dehydrogenase and activation of AMPK, which activates prosurvival macroautophagy. Thus, constitutive InsP(3)R Ca(2+) release to mitochondria is an essential cellular process that is required for efficient mitochondrial respiration and maintenance of normal cell bioenergetics.


Nature Cell Biology | 2005

The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R

C. White; Chi Li; Jun Yang; Nataliya B. Petrenko; Muniswamy Madesh; Craig B. Thompson; J. Kevin Foskett

Members of the Bcl-2 protein family modulate outer mitochondrial membrane permeability to control apoptosis. However, these proteins also localize to the endoplasmic reticulum (ER), the functional significance of which is controversial. Here we provide evidence that anti-apoptotic Bcl-2 proteins regulate the inositol 1,4,5-trisphosphate receptor (InsP3R) ER Ca2+ release channel resulting in increased cellular apoptotic resistance and enhanced mitochondrial bioenergetics. Anti-apoptotic Bcl-XL interacts with the carboxyl terminus of the InsP3R and sensitizes single InsP3R channels in ER membranes to low [InsP3], enhancing Ca2+ and InsP3-dependent regulation of channel activity in vitro and in vivo, reducing ER Ca2+ content and stimulating mitochondrial energetics. The pro-apoptotic proteins Bax and tBid antagonize this effect by blocking the biochemical interaction of Bcl-XL with the InsP3R. These data support a novel model in which Bcl-XL is a direct effector of the InsP3R, increasing its sensitivity to InsP3 and enabling ER Ca2+ release to be more sensitively coupled to extracellular signals. As a consequence, cells are protected against apoptosis by a more sensitive and dynamic coupling of ER to mitochondria through Ca2+-dependent signal transduction that enhances cellular bioenergetics and preserves survival.


Cell | 2012

MICU1 is an Essential Gatekeeper for MCU-Mediated Mitochondrial Ca2+ Uptake That Regulates Cell Survival

Karthik Mallilankaraman; Patrick J. Doonan; César Cárdenas; Harish C. Chandramoorthy; Marioly Müller; Russell A. Miller; Nicholas E. Hoffman; Rajesh Kumar Gandhirajan; Jordi Molgó; Morris J. Birnbaum; Brad S. Rothberg; Don-On Daniel Mak; J. Kevin Foskett; Muniswamy Madesh

Mitochondrial Ca(2+) (Ca(2+)(m)) uptake is mediated by an inner membrane Ca(2+) channel called the uniporter. Ca(2+) uptake is driven by the considerable voltage present across the inner membrane (ΔΨ(m)) generated by proton pumping by the respiratory chain. Mitochondrial matrix Ca(2+) concentration is maintained five to six orders of magnitude lower than its equilibrium level, but the molecular mechanisms for how this is achieved are not clear. Here, we demonstrate that the mitochondrial protein MICU1 is required to preserve normal [Ca(2+)](m) under basal conditions. In its absence, mitochondria become constitutively loaded with Ca(2+), triggering excessive reactive oxygen species generation and sensitivity to apoptotic stress. MICU1 interacts with the uniporter pore-forming subunit MCU and sets a Ca(2+) threshold for Ca(2+)(m) uptake without affecting the kinetic properties of MCU-mediated Ca(2+) uptake. Thus, MICU1 is a gatekeeper of MCU-mediated Ca(2+)(m) uptake that is essential to prevent [Ca(2+)](m) overload and associated stress.


Journal of Biological Chemistry | 1998

Subunit Stoichiometry of the Epithelial Sodium Channel

Farhad Kosari; Shaohu Sheng; Jinqing Li; Don On Daniel Mak; J. Kevin Foskett; Thomas R. Kleyman

The epithelial Na+ Channel (ENaC) mediates Na+ reabsorption in a variety of epithelial tissues. ENaC is composed of three homologous subunits, termed α, β, and γ. All three subunits participate in channel formation as the absence of any one subunit results in a significant reduction or complete abrogation of Na+ current expression inXenopus oocytes. To determine the subunit stoichiometry, a biophysical assay was employed utilizing mutant subunits that display significant differences in sensitivity to channel blockers from the wild type channel. Our results indicate that ENaC is a tetrameric channel with an α2βγ stoichiometry, similar to that reported for other cation selective channels, such as Kv, Kir, as well as voltage-gated Na+ and Ca2+ channels that have 4-fold internal symmetry.


Cell | 2008

A Polymorphism in CALHM1 Influences Ca2+ Homeostasis, Aβ Levels, and Alzheimer's Disease Risk

Ute Dreses-Werringloer; Jean Charles Lambert; Valérie Vingtdeux; Haitian Zhao; Horia Vais; Adam P. Siebert; Ankit Jain; Jeremy Koppel; Anne Rovelet-Lecrux; Didier Hannequin; Florence Pasquier; Daniela Galimberti; Elio Scarpini; David Mann; Corinne Lendon; Dominique Campion; Philippe Amouyel; Peter Davies; J. Kevin Foskett; Fabien Campagne; Philippe Marambaud

Alzheimers disease (AD) is a genetically heterogeneous disorder characterized by early hippocampal atrophy and cerebral amyloid-beta (Abeta) peptide deposition. Using TissueInfo to screen for genes preferentially expressed in the hippocampus and located in AD linkage regions, we identified a gene on 10q24.33 that we call CALHM1. We show that CALHM1 encodes a multipass transmembrane glycoprotein that controls cytosolic Ca(2+) concentrations and Abeta levels. CALHM1 homomultimerizes, shares strong sequence similarities with the selectivity filter of the NMDA receptor, and generates a large Ca(2+) conductance across the plasma membrane. Importantly, we determined that the CALHM1 P86L polymorphism (rs2986017) is significantly associated with AD in independent case-control studies of 3404 participants (allele-specific OR = 1.44, p = 2 x 10(-10)). We further found that the P86L polymorphism increases Abeta levels by interfering with CALHM1-mediated Ca(2+) permeability. We propose that CALHM1 encodes an essential component of a previously uncharacterized cerebral Ca(2+) channel that controls Abeta levels and susceptibility to late-onset AD.


Nature Cell Biology | 2013

MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism

Karthik Mallilankaraman; César Cárdenas; Patrick J. Doonan; Harish C. Chandramoorthy; Krishna M. Irrinki; Tünde Golenár; György Csordás; Priyanka Madireddi; Jun Yang; Marioly Müller; Russell A. Miller; Jill E. Kolesar; Jordi Molgó; Brett A. Kaufman; György Hajnóczky; J. Kevin Foskett; Muniswamy Madesh

The mitochondrial calcium uniporter (MCU) mediates calcium uptake by mitochondria and thus regulates cellular bioenergetics, but how MCU activity is modulated is not fully understood. Madesh, Foskett and colleagues report that the integral mitochondrial membrane protein MCUR1 (mitochondrial calcium uniporter regulator 1) binds to the MCU and promotes MCU-dependent calcium uptake to control ATP production and autophagy.


Journal of Clinical Investigation | 2000

Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase

Kenneth R. Hallows; Viswanathan Raghuram; Bruce E. Kemp; Lee A. Witters; J. Kevin Foskett

The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-gated Cl(-) channel that regulates other epithelial transport proteins by uncharacterized mechanisms. We employed a yeast two-hybrid screen using the COOH-terminal 70 residues of CFTR to identify proteins that might be involved in such interactions. The alpha1 (catalytic) subunit of AMP-activated protein kinase (AMPK) was identified as a dominant and novel interacting protein. The interaction is mediated by residues 1420-1457 in CFTR and by the COOH-terminal regulatory domain of alpha1-AMPK. Mutations of two protein trafficking motifs within the 38-amino acid region in CFTR each disrupted the interaction. GST-fusion protein pull-down assays in vitro and in transfected cells confirmed the CFTR-alpha1-AMPK interaction and also identified alpha2-AMPK as an interactor with CFTR. AMPK is coexpressed in CFTR-expressing cell lines and shares an apical distribution with CFTR in rat nasal epithelium. AMPK phosphorylated full-length CFTR in vitro, and AMPK coexpression with CFTR in Xenopus oocytes inhibited cAMP-activated CFTR whole-cell Cl(-) conductance by approximately 35-50%. Because AMPK is a metabolic sensor in cells and responds to changes in cellular ATP, regulation of CFTR by AMPK may be important in inhibiting CFTR under conditions of metabolic stress, thereby linking transepithelial transport to cell metabolic state.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels

Jun Yang; Sean M.J. McBride; Don On Daniel Mak; Noga Vardi; Krzysztof Palczewski; Françoise Haeseleer; J. Kevin Foskett

The inositol trisphosphate (InsP3) receptor (InsP3R) is a ubiquitously expressed intracellular Ca2+ channel that mediates complex cytoplasmic Ca2+ signals, regulating diverse cellular processes, including synaptic plasticity. Activation of the InsP3R channel is normally thought to require binding of InsP3 derived from receptor-mediated activation of phosphatidylinositol lipid hydrolysis. Here we identify a family of neuronal Ca2+-binding proteins as high-affinity protein agonists of the InsP3R, which bind to the channel and activate gating in the absence of InsP3. CaBP/caldendrin, a subfamily of the EF-hand-containing neuronal calcium sensor family of calmodulin-related proteins, bind specifically to the InsP3-binding region of all three InsP3R channel isoforms with high affinity (Ka ≈ 25 nM) in a Ca2+-dependent manner (Ka ≈ 1 μM). Binding activates single-channel gating as efficaciously as InsP3, dependent on functional EF-hands in CaBP. In contrast, calmodulin neither bound with high affinity nor activated channel gating. CaBP1 and the type 1 InsP3R associate in rat whole brain and cerebellum lysates, and colocalize extensively in subcellular regions in cerebellar Purkinje neurons. Thus, InsP3R-mediated Ca2+ signaling in cells is possible even in the absence of InsP3 generation, a process that may be particularly important in responding to and shaping changes in intracellular Ca2+ concentration by InsP3-independent pathways and for localizing InsP3-mediated Ca2+ signals to individual synapses.


Nature | 2013

CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes

Akiyuki Taruno; Valérie Vingtdeux; Makoto Ohmoto; Zhongming Ma; Gennady Dvoryanchikov; Ang Li; Leslie Adrien; Haitian Zhao; Sze Leung; Maria Abernethy; Jeremy Koppel; Peter Davies; Mortimer M. Civan; Nirupa Chaudhari; Ichiro Matsumoto; Göran Hellekant; Michael G. Tordoff; Philippe Marambaud; J. Kevin Foskett

Recognition of sweet, bitter and umami tastes requires the non-vesicular release from taste bud cells of ATP, which acts as a neurotransmitter to activate afferent neural gustatory pathways. However, how ATP is released to fulfil this function is not fully understood. Here we show that calcium homeostasis modulator 1 (CALHM1), a voltage-gated ion channel, is indispensable for taste-stimuli-evoked ATP release from sweet-, bitter- and umami-sensing taste bud cells. Calhm1 knockout mice have severely impaired perceptions of sweet, bitter and umami compounds, whereas their recognition of sour and salty tastes remains mostly normal. Calhm1 deficiency affects taste perception without interfering with taste cell development or integrity. CALHM1 is expressed specifically in sweet/bitter/umami-sensing type II taste bud cells. Its heterologous expression induces a novel ATP permeability that releases ATP from cells in response to manipulations that activate the CALHM1 ion channel. Knockout of Calhm1 strongly reduces voltage-gated currents in type II cells and taste-evoked ATP release from taste buds without affecting the excitability of taste cells by taste stimuli. Thus, CALHM1 is a voltage-gated ATP-release channel required for sweet, bitter and umami taste perception.


Journal of Biological Chemistry | 2002

Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter

Connie M. Westhoff; Michelle Ferreri-Jacobia; Don-On Daniel Mak; J. Kevin Foskett

The Rh blood group proteins are well known as the erythrocyte targets of the potent antibody response that causes hemolytic disease of the newborn. These proteins have been described in molecular detail; however, little is known about their function. A transport function is suggested by their predicted structure and from phylogenetic analysis. To obtain evidence for a role in solute transport, we expressed Rh proteins in Xenopusoocytes and now demonstrate that the erythroid Rh-associated glycoprotein mediates uptake of ammonium across cell membranes. Rh-associated glycoprotein carrier-mediated uptake, characterized with the radioactive analog of ammonium [14C]methylamine (MA), had an apparent EC50 of 1.6 mm and a maximum uptake rate (V max) of 190 pmol/oocyte/min. Uptake was independent of the membrane potential and the Na+ gradient. MA transport was stimulated by raising extracellular pH or by lowering intracellular pH, suggesting that uptake was coupled to an outwardly directed H+ gradient. MA uptake was insensitive to additions of amiloride, amine-containing compounds tetramethyl- and tetraethylammonium chloride, glutamine, and urea. However, MA uptake was significantly antagonized by ammonium chloride with inhibition kinetics (IC50 = 1.14 mm) consistent with the hypothesis that the uptake of MA and ammonium involves a similar H+-coupled counter-transport mechanism.

Collaboration


Dive into the J. Kevin Foskett's collaboration.

Top Co-Authors

Avatar

Don-On Daniel Mak

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Horia Vais

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Zhongming Ma

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam P. Siebert

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jun Yang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Marambaud

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Robert J. Lee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Marioly Müller

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge