Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Krzywinski is active.

Publication


Featured researches published by J. Krzywinski.


Nature | 2011

Femtosecond x-ray protein nanocrystallography

Henry N. Chapman; Petra Fromme; Anton Barty; Thomas A. White; Richard A. Kirian; Andrew Aquila; Mark S. Hunter; Joachim Schulz; Daniel P. DePonte; Uwe Weierstall; R. Bruce Doak; Filipe R. N. C. Maia; Andrew V. Martin; Ilme Schlichting; Lukas Lomb; Nicola Coppola; Robert L. Shoeman; Sascha W. Epp; Robert Hartmann; Daniel Rolles; A. Rudenko; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; Peter Holl; Mengning Liang; Miriam Barthelmess; Carl Caleman; Sébastien Boutet; Michael J. Bogan

X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.


Nature | 2011

Single mimivirus particles intercepted and imaged with an X-ray laser

M. Marvin Seibert; Tomas Ekeberg; Filipe R. N. C. Maia; Martin Svenda; Jakob Andreasson; O Jonsson; Duško Odić; Bianca Iwan; Andrea Rocker; Daniel Westphal; Max F. Hantke; Daniel P. DePonte; Anton Barty; Joachim Schulz; Lars Gumprecht; Nicola Coppola; Andrew Aquila; Mengning Liang; Thomas A. White; Andrew V. Martin; Carl Caleman; Stephan Stern; Chantal Abergel; Virginie Seltzer; Jean-Michel Claverie; Christoph Bostedt; John D. Bozek; Sébastien Boutet; A. Miahnahri; Marc Messerschmidt

X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.


Nature | 2012

Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser

S. M. Vinko; O. Ciricosta; B. I. Cho; K. Engelhorn; H.-K. Chung; Colin Brown; T. Burian; J. Chalupský; Roger Falcone; Catherine Graves; V. Hajkova; Andrew Higginbotham; L. Juha; J. Krzywinski; Hae Ja Lee; Marc Messerschmidt; C. D. Murphy; Y. Ping; Andreas Scherz; W. F. Schlotter; S. Toleikis; J. J. Turner; L. Vysin; T. Wang; B. Wu; U. Zastrau; Diling Zhu; R. W. Lee; P. A. Heimann; B. Nagler

Matter with a high energy density (>105 joules per cm3) is prevalent throughout the Universe, being present in all types of stars and towards the centre of the giant planets; it is also relevant for inertial confinement fusion. Its thermodynamic and transport properties are challenging to measure, requiring the creation of sufficiently long-lived samples at homogeneous temperatures and densities. With the advent of the Linac Coherent Light Source (LCLS) X-ray laser, high-intensity radiation (>1017 watts per cm2, previously the domain of optical lasers) can be produced at X-ray wavelengths. The interaction of single atoms with such intense X-rays has recently been investigated. An understanding of the contrasting case of intense X-ray interaction with dense systems is important from a fundamental viewpoint and for applications. Here we report the experimental creation of a solid-density plasma at temperatures in excess of 106 kelvin on inertial-confinement timescales using an X-ray free-electron laser. We discuss the pertinent physics of the intense X-ray–matter interactions, and illustrate the importance of electron–ion collisions. Detailed simulations of the interaction process conducted with a radiative-collisional code show good qualitative agreement with the experimental results. We obtain insights into the evolution of the charge state distribution of the system, the electron density and temperature, and the timescales of collisional processes. Our results should inform future high-intensity X-ray experiments involving dense samples, such as X-ray diffractive imaging of biological systems, material science investigations, and the study of matter in extreme conditions.


Optics Express | 2012

Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry

Frank Siewert; Jana Buchheim; Sébastien Boutet; Garth J. Williams; Paul A. Montanez; J. Krzywinski; Riccardo Signorato

We present recent results on the inspection of a first diffraction-limited hard X-ray Kirkpatrick-Baez (KB) mirror pair for the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). The full KB system - mirrors and holders - was under inspection by use of high resolution slope measuring deflectometry. The tests confirmed that KB mirrors of 350mm aperture length characterized by an outstanding residual figure error of <1 nm rms has been realized. This corresponds to the residual figure slope error of about 0.05µrad rms, unprecedented on such long elliptical mirrors. Additional measurements show the clamping of the mirrors to be a critical step for the final - shape preserving installation of such outstanding optics.


Optics Express | 2011

Spectral encoding of x-ray/optical relative delay.

Mina Bionta; Henrik T. Lemke; James Cryan; James M. Glownia; Christoph Bostedt; Marco Cammarata; Jean-Charles Castagna; Y. Ding; David M. Fritz; Alan Fry; J. Krzywinski; Marc Messerschmidt; Sebastian Schorb; M. Swiggers; Ryan Coffee

We present a new technique for measuring the relative delay between a soft x-ray FEL pulse and an optical laser that indicates a sub 25 fs RMS measurement error. An ultra-short x-ray pulse photo-ionizes a semiconductor (Si(3)N(4)) membrane and changes the optical transmission. An optical continuum pulse with a temporally chirped bandwidth spanning 630 nm-710 nm interacts with the membrane such that the timing of the x-ray pulse can be determined from the onset of the spectral modulation of the transmitted optical pulse. This experiment demonstrates a nearly in situ single-shot measurement of the x-ray pulse arrival time relative to the ultra-short optical pulse.


Optics Express | 2007

Characteristics of focused soft X-ray free-electron laser beam determined by ablation of organic molecular solids

J. Chalupsky; L. Juha; J. Kuba; J. Cihelka; V. Hajkova; S. Koptyaev; J. Krása; A. Velyhan; Magnus Bergh; Carl Caleman; Janos Hajdu; Richard M. Bionta; Henry N. Chapman; Stefan P. Hau-Riege; Richard A. London; M. Jurek; J. Krzywinski; R. Nietubyc; J.B. Pełka; R. Sobierajski; J. Meyer-ter-Vehn; A. Tronnier; Klaus Sokolowski-Tinten; N. Stojanovic; Kai Tiedtke; S. Toleikis; T. Tschentscher; H. Wabnitz; U. Zastrau

A linear accelerator based source of coherent radiation, FLASH (Free-electron LASer in Hamburg) provides ultra-intense femtosecond radiation pulses at wavelengths from the extreme ultraviolet (XUV; lambda<100nm) to the soft X-ray (SXR; lambda<30nm) spectral regions. 25-fs pulses of 32-nm FLASH radiation were used to determine the ablation parameters of PMMA - poly (methyl methacrylate). Under these irradiation conditions the attenuation length and ablation threshold were found to be (56.9+/-7.5) nm and approximately 2 mJ*cm(-2), respectively. For a second wavelength of 21.7 nm, the PMMA ablation was utilized to image the transverse intensity distribution within the focused beam at mum resolution by a method developed here.


Review of Scientific Instruments | 2012

The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser.

W. F. Schlotter; J. J. Turner; Michael Rowen; P. A. Heimann; Michael Holmes; O. Krupin; M. Messerschmidt; Stefan Moeller; J. Krzywinski; Regina Soufli; Mónica Fernández-Perea; N. Kelez; Sooheyong Lee; Ryan Coffee; G. Hays; M. Beye; N. Gerken; F. Sorgenfrei; Stefan P. Hau-Riege; L. Juha; J. Chalupsky; V. Hajkova; Adrian P. Mancuso; A. Singer; O. Yefanov; I. A. Vartanyants; Guido Cadenazzi; Brian Abbey; Keith A. Nugent; H. Sinn

The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.


Scientific Reports | 2011

Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates

Christian David; Sergey Gorelick; S. Rutishauser; J. Krzywinski; Joan Vila-Comamala; Vitaliy A. Guzenko; O. Bunk; Elina Färm; Mikko Ritala; Marco Cammarata; David M. Fritz; Ray Barrett; Liubov Samoylova; Jan Grünert; Harald Sinn

A growing number of X-ray sources based on the free-electron laser (XFEL) principle are presently under construction or have recently started operation. The intense, ultrashort pulses of these sources will enable new insights in many different fields of science. A key problem is to provide x-ray optical elements capable of collecting the largest possible fraction of the radiation and to focus into the smallest possible focus. As a key step towards this goal, we demonstrate here the first nanofocusing of hard XFEL pulses. We developed diamond based Fresnel zone plates capable of withstanding the full beam of the worlds most powerful x-ray laser. Using an imprint technique, we measured the focal spot size, which was limited to 320 nm FWHM by the spectral band width of the source. A peak power density in the focal spot of 4×1017 W/cm2 was obtained at 70 fs pulse length.


Review of Scientific Instruments | 2011

Linac Coherent Light Source soft x-ray materials science instrument optical design and monochromator commissioning

Philip A. Heimann; O. Krupin; W. F. Schlotter; J. J. Turner; J. Krzywinski; F. Sorgenfrei; Marc Messerschmidt; David Bernstein; J. Chalupský; Vera Hájková; Stefan P. Hau-Riege; Michael Holmes; L. Juha; Nicholas Kelez; Jan Lüning; Dennis Nordlund; Monica Fernandez Perea; Andreas Scherz; Regina Soufli; W. Wurth; Michael Rowen

We present the x-ray optical design of the soft x-ray materials science instrument at the Linac Coherent Light Source, consisting of a varied line-spaced grating monochromator and Kirkpatrick-Baez refocusing optics. Results from the commissioning of the monochromator are shown. A resolving power of 3000 was achieved, which is within a factor of two of the design goal.


Applied Physics Letters | 2005

Ablation of organic polymers by 46.9-nm-laser radiation

L. Juha; Michal Bittner; Dagmar Chvostova; J. Krása; Zdenek Otcenasek; A. R. Präg; J. Ullschmied; Z. Pientka; J. Krzywinski; J.B. Pełka; A. Wawro; M. Grisham; G. Vaschenko; Carmen S. Menoni; J. J. Rocca

We report results of the exposure of poly(tetrafluoroethylene) -(PTFE), poly(methyl methacrylate) -(PMMA), and polyimide -(PI) to intense 46.9-nm-laser pulses of 1.2-ns-duration at fluences ranging from ∼0.1 to ∼10J∕cm2. The ablation rates were found to be similar for all three materials, ∼80–90nm∕pulse at 1J∕cm2. The results suggest that the ablation of organic polymers induced by intense extreme ultraviolet laser radiation differs from that corresponding to irradiation with longer wavelengths.

Collaboration


Dive into the J. Krzywinski's collaboration.

Top Co-Authors

Avatar

L. Juha

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

R. Sobierajski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. Hajkova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

T. Burian

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

M. Jurek

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Christoph Bostedt

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan P. Hau-Riege

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Chalupsky

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Alberto Lutman

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge