Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.-L. Bertaux is active.

Publication


Featured researches published by J.-L. Bertaux.


Science | 1979

Extreme Ultraviolet Observations from Voyager 1 Encounter with Jupiter

A. L. Broadfoot; Michael Belton; P. Z. Takacs; Bill R. Sandel; Donald E. Shemansky; J. B. Holberg; Joseph M. Ajello; Sushil K. Atreya; T. M. Donahue; H. W. Moos; J.-L. Bertaux; Jacques Blamont; Darrell F. Strobel; John C. McConnell; A. Dalgarno; Richard Goody; Michael B. McElroy

Observations of the optical extreme ultraviolet spectrum of the Jupiter planetary system during the Voyager 1 encounter have revealed previously undetected physical processes of significant proportions. Bright emission lines of S III, S IV, and O III indicating an electron temperature of 105 K have been identified in preliminary analyses of the Io plasma torus spectrum. Strong auroral atomic and molecular hydrogen emissions have been observed in the polar regions of Jupiter near magnetic field lines that map the torus into the atmosphere of Jupiter. The observed resonance scattering of solar hydrogen Lyman α by the atmosphere of Jupiter and the solar occultation experiment suggest a hot thermosphere (≥ 1000 K) wvith a large atomic hydrogen abundance. A stellar occultation by Ganymede indicates that its atmosphere is at most an exosphere.


Science | 1989

Ultraviolet Spectrometer Observations of Neptune and Triton

A.L. Broadfoot; Sushil K. Atreya; J.-L. Bertaux; Jacques Blamont; A. J. Dessler; T. M. Donahue; W. T. Forrester; Doyle Hall; Floyd Herbert; J. B. Holberg; D. M. Hunter; V. A. Krasnopolsky; S. Linick; Jonathan I. Lunine; John C. McConnell; H. W. Moos; Bill R. Sandel; Nicholas M. Schneider; D. E. Shemansky; G. R. Smith; Darrell F. Strobel; Roger V. Yelle

Results from the occultation of the sun by Neptune imply a temperature of 750 � 150 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane, acetylene, and ethane at lower levels. The ultraviolet spectrum of the sunlit atmosphere of Neptune resembles the spectra of the Jupiter, Saturn, and Uranus atmospheres in that it is dominated by the emissions of H Lyman α (340 � 20 rayleighs) and molecular hydrogen. The extreme ultraviolet emissions in the range from 800 to 1100 angstroms at the four planets visited by Voyager scale approximately as the inverse square of their heliocentric distances. Weak auroral emissions have been tentatively identified on the night side of Neptune. Airglow and occultation observations of Tritons atmosphere show that it is composed mainly of molecular nitrogen, with a trace of methane near the surface. The temperature of Tritons upper atmosphere is 95 � 5 kelvins, and the surface pressure is roughly 14 microbars.


Science | 1986

ULTRAVIOLET SPECTROMETER OBSERVATIONS OF URANUS.

A.L. Broadfoot; Floyd Herbert; J. B. Holberg; D. M. Hunten; S. Kumar; Bill R. Sandel; D. E. Shemansky; G. R. Smith; Roger V. Yelle; Darrell F. Strobel; H. W. Moos; T. M. Donahue; Sushil K. Atreya; J.-L. Bertaux; Jacques Blamont; John C. McConnell; A. J. Dessler; S. Linick; R. Springer

Data from solar and stellar occultations of Uranus indicate a temperature of about 750 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane and acetylene in the lower levels. The ultraviolet spectrum of the sunlit hemisphere is dominated by emissions from atomic and molecular hydrogen, which are kmown as electroglow emissions. The energy source for these emissions is unknown, but the spectrum implies excitation by low-energy electrons (modeled with a 3-electron-volt Maxwellian energy distribution). The major energy sink for the electrons is dissociation of molecular hydrogen, producing hydrogen atoms at a rate of 1029 per second. Approximately half the atoms have energies higher than the escape energy. The high temperature of the atmosphere, the small size of Uranus, and the number density of hydrogen atoms in the thermosphere imply an extensive thermal hydrogen corona that reduces the orbital lifetime of ring particles and biases the size distribution toward larger particles. This corona is augmented by the nonthermal hydrogen atoms associated with the electroglow. An aurora near the magnetic pole in the dark hemisphere arises from excitation of molecular hydrogen at the level where its vertical column abundance is about 1020 per square centimeter with input power comparable to that of the sunlit electroglow (approximately 2x1011 watts). An initial estimate of the acetylene volume mixing ratio, as judged from measurements of the far ultraviolet albedo, is about 2 x 10-7 at a vertical column abundance of molecular hydrogen of 1023 per square centimeter (pressure, approximately 0.3 millibar). Carbon emissions from the Uranian atmosphere were also detected.


Science | 1995

HST far-ultraviolet imaging of Jupiter during the impacts of comet Shoemaker-Levy 9

John Clarke; Renée Prangé; G. E. Ballester; John W. Trauger; Robin W. Evans; Daniel Rego; Karl R. Stapelfeldt; Wing Ip; Jean-Claude Gérard; Heidi B. Hammel; Manish Ballav; Lotfi Ben Jaffel; J.-L. Bertaux; David Crisp; Claude Emerich; Walter Michael Harris; Mihaly Horanyi; Steven Miller; Alex Storrs; Harold A. Weaver

Hubble Space Telescope far-ultraviolet images of Jupiter during the Shoemaker-Levy 9 impacts show the impact regions darkening over the 2 to 3 hours after the impact, becoming darker and more extended than at longer wavelengths, which indicates that ultraviolet-absorbing gases or aerosols are more extended, more absorbing, and at higher altitudes than the absorbers of visible light. Transient auroral emissions were observed near the magnetic conjugate point of the K impact site just after that impact. The global auroral activity was fainter than average during the impacts, and a variable auroral emission feature was observed inside the southern auroral oval preceding the impacts of fragments Q1 and Q2.


The Astrophysical Journal | 1987

Detection of neutral oxygen and sulfur emissions near Io using IUE

G. E. Ballester; H. W. Moos; Paul D. Feldman; Darrell F. Strobel; Michael E. Summers; J.-L. Bertaux; Thomas E. Skinner; M. C. Festou; J. H. Lieske

IUE spectra have shown several O I and S I emissions near Io. The optical thickness of the S I 1814 A multiplet indicates that the S column density is greater than about 2 x 10 to the 12th/sq cm. The presence of an S I 1479 A feature suggests that electron collisions with SO2 could be a major source of the emissions. It is likely that particle excitation in the denser collision-dominated part of the atmosphere is also responsible for a substantial part of the observed emissions.


The Astrophysical Journal | 1985

Long-term stability of the Io high-temperature plasma torus

H. W. Moos; Thomas E. Skinner; S. T. Durrance; P. D. Feldman; M. C. Festou; J.-L. Bertaux

The short wavelength camera of the International Ultraviolet Explorer satellite was used to measure S II 1256, S III 1199, semiforbidden S III 1729, and semiforbidden S IV 1406 emission from the high-temperature region of the Io plasma torus. Observations over a period of five years (1979-1984) indicate that the Io plasma parameters have relatively small variations, particularly in the case of the mixing ratio for the dominant constituent S(++), and electron temperature. A simple three-dimensional model of the plasma torus was used to obtain the ion mixing ratios and the plasma density for each observation. The results are compared with Voyager 1 data for mixing ratio (ion density divided by electron density); ionization balance; and plasma density. The results of the comparison are discussed in detail.


The Astronomical Journal | 2011

Ultraviolet Discoveries at Asteroid (21) Lutetia by the Rosetta Alice Ultraviolet Spectrograph

S. A. Stern; J. Wm. Parker; Paul D. Feldman; Harold A. Weaver; Andrew Joseph Steffl; Michael F. A’Hearn; Lori Michelle Feaga; Emma M. Birath; A. Graps; J.-L. Bertaux; David C. Slater; Nathaniel J. Cunningham; Maarten H. Versteeg; John Scherrer

The NASA Alice ultraviolet (UV) imaging spectrograph on board the ESA Rosetta comet orbiter successfully conducted a series of flyby observations of the large asteroid (21) Lutetia in the days surrounding Rosettas closest approach on 2010 July 10. Observations included a search for emission lines from gas, and spectral observations of the Lutetias surface reflectance. No emissions from gas around Lutetia were observed. Regarding the surface reflectance, we found that Lutetia has a distinctly different albedo and slope than both the asteroid (2867) Steins and Earths moon, the two most analogous objects studied in the far ultraviolet (FUV). Further, Lutetias ~10% geometric albedo near 1800 A is significantly lower than its 16%-19% albedo near 5500 A. Moreover, the FUV albedo shows a precipitous drop (to ~4%) between 1800 A and 1600 A, representing the strongest spectral absorption feature observed in Lutetias spectrum at any observed wavelength. Our surface reflectance fits are not unique but are consistent with a surface dominated by an EH5 chondrite, combined with multiple other possible surface constituents, including anorthite, water frost, and SO2 frost or a similar mid-UV absorber. The water frost identification is consistent with some data sets but inconsistent with others. The anorthite (feldspar) identification suggests that Lutetia is a differentiated body.


The Astrophysical Journal | 1983

IUE spectrum of the Io torus: identification of the 5S2→3P2,1 transition of S III

H. W. Moos; S. T. Durrance; Thomas E. Skinner; Paul D. Feldman; J.-L. Bertaux; M. C. Festou

A spectrum of a much higher quality than previously available has been obtained which shows emission features arising from S(+), S(++), S(+++), and an upper limit for O(++). The well-defined splitting of the 1729 A feature is seen as confirming its tentative identification as semiforbidden S III 5S2(0)-3P2,1. The lower contamination of S III 1199 A by H I 1216 A than in most previous IUE spectra of the Io torus makes possible an estimate of the S III 1729 A collision strength. The variation of these features with temperature and their possible presence in spectra of nebulae are discussed.


The Astrophysical Journal | 1982

Copernicus measurement of the Jovian Lyman-alpha emission and its aeronomical significance

Sushil K. Atreya; Michel C. Festou; T. M. Donahue; R.B. Kerr; E. S. Barker; W.D. Cochran; J.-L. Bertaux; W.L. Upson

Observations of Jupiter made with the high-resolution ultraviolet spectrometer of the Orbiting Astronomical Observatory Copernicus in 1980 April and May yield the intensity of the Jovian Lyman-alpha emission to be 7 +- 2.5 kR. These measurements indicate that the Lyman-alpha intensity has decreased by about a factor of 2 from the time of the Voyager ultraviolet spectrometer measurements, nearly a year earlier. The Copernicus measurements, when combined with all other previous measurements of the Jovian Lyman-alpha emission, point to an unusually high column abundance of hydrogen atoms above the methane homopause at the Voyager epoch. Since the auroral charged particle bombardment of moelcular hydrogen is expected to contribute significantly to the global population of the hydrogen atoms, it is suggested that at the time of the Voyager Jupiter encounter, unusually high auroral activity existed, and it was perhaps linked to the high concentration of the Io plasma torus. It should be pointed out that the temporal variation of the Saturn Lyman-alpha emission, when contrasted with the Jovian data, reveals that the auroral processes are not nearly as important in determining the Saturn Lyman-alpha intensity in the nonauroral region. The latest Copernicus observations also suggest an increase in the Jovian homopausemorexa0» value of the eddy mixing coefficient by about a factor of 5--10 since the Voyager epoch.«xa0less


Astrophysics and Space Science | 2000

Outer Heliosphere Ly-α Measurements: 1993 to 1998

Eric Quémerais; Bill R. Sandel; J.-L. Bertaux; Rosine Lallement

We present the Lyman α sky background data obtained by the UV spectrometers on the Voyager 1 and 2 spacecraft between 1993 and early 1998. These data which consist of special maneuvers dedicated to the study of the Lyα pattern in the outer heliosphere represent a unique opportunity to constrain the hydrogen distribution in the outer heliosphere.A first analysis of the data is presented. This consists of a comparison with a Hot Model of the hydrogen distribution combined with a radiative transfer calculation in the hypothesis of Complete Frequency Redistribution. We confirm previous measurements showing the existence of an excess in Lyα background in the upwind direction. The radial variation of the upwind intensity measurements found from the two Voyager data sets are different. The Voyager 1 data show a radial decrease following r-1.4 whereas the Voyager 2 data yield r-0.79. These values have been derived after correction for solar flux variations using the SOLSTICE/UARS data set.

Collaboration


Dive into the J.-L. Bertaux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Joseph Steffl

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. W. Moos

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

David C. Slater

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Harold A. Weaver

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Alan Stern

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel Wm. Parker

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Maarten H. Versteeg

Southwest Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge