Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. L. Perez Velazquez is active.

Publication


Featured researches published by J. L. Perez Velazquez.


Neuroscience | 2000

Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy.

Marina V. Frantseva; J. L. Perez Velazquez; G Tsoraklidis; A.J Mendonca; Y Adamchik; L.R. Mills; Peter L. Carlen; M.W Burnham

Reactive oxygen species have been implicated in the development of seizures under pathological conditions and linked to seizure-induced neurodegeneration. There has been little direct evidence, however, of free radical production resulting from seizures. Using amygdala-kindled rats, we have examined the generation of reactive oxygen species following seizures, and their possible contribution to seizure development and seizure-induced neuronal loss. The concentrations of two products of free radical-induced lipid peroxidation, malonaldehyde and 4-hydroxy-2(E)-nonenal, were measured using colorimetric assays. Lipid peroxidation was increased in both hemispheres of kindled rats as compared to sham-operated controls. Cell death was also significantly increased in all hippocampal areas. Antioxidants (vitamin E and glutathione) prevented the rise in lipid peroxides and hippocampal neuronal death during kindling, but did not arrest the development of seizures.Thus, epileptiform activity can result in free radical production which may be one of the factors leading to cell death.


Brain Research Protocols | 2000

Methods to induce primary and secondary traumatic damage in organotypic hippocampal slice cultures.

Y Adamchik; Marina Frantseva; M. Weisspapir; Peter L. Carlen; J. L. Perez Velazquez

Organotypic brain slice cultures have been used in a variety of studies on neurodegenerative processes [K.M. Abdel-Hamid, M. Tymianski, Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins, J. Neurosci. 17, 1997, pp. 3538-3553; D.W. Newell, A. Barth, V. Papermaster, A.T. Malouf, Glutamate and non-glutamate receptor mediated toxicity caused by oxygen and glucose deprivation in organotypic hippocampal cultures, J. Neurosci. 15, 1995, pp. 7702-7711; J.L. Perez Velazquez, M.V. Frantseva, P.L. Carlen, In vitro ischemia promotes glutamate mediated free radical generation and intracellular calcium accumulation in pyramidal neurons of cultured hippocampal slices, J. Neurosci. 23, 1997, pp. 9085-9094; L. Stoppini, L.A. Buchs, D. Muller, A simple method for organotypic cultures of nervous tissue, J. Neurosci. Methods 37, 1991, pp. 173-182; R.C. Tasker, J.T. Coyle, J.J. Vornov, The regional vulnerability to hypoglycemia induced neurotoxicity in organotypic hippocampal culture: protection by early tetrodotoxin or delayed MK 801, J. Neurosci. 12, 1992, pp. 4298-4308.]. We describe two methods to induce traumatic cell damage in hippocampal organotypic cultures. Primary trauma injury was achieved by rolling a stainless steel cylinder (0.9 g) on the organotypic slices. Secondary injury was followed after dropping a weight (0.137 g) on a localised area of the organotypic slice, from a height of 2 mm. The time course and extent of cell death were determined by measuring the fluorescence of the viability indicator propidium iodide (PI) at several time points after the injury. The initial localised impact damage spread 24 and 67 h after injury, cell death being 25% and 54%, respectively, when slices were kept at 37 degrees C. To validate these methods as models to assess neuroprotective strategies, similar insults were applied to slices at relatively low temperatures (30 degrees C), which is known to be neuroprotective [F.C. Barone, G.Z. Feuerstein, R.F. White, Brain cooling during transient focal ischaemia provides complete neuroprotection, Neurosci. Biobehav. Rev. 1, 1997, pp. 31-44; V.M. Bruno, M.P. Goldberg, L.L. Dugan, R.G. Giffard, D.W. Choi, Neuroprotective effect of hypothermia in cortical cultures exposed to oxygen glucose deprivation or excitatory aminoacids, J. Neurochem. 4, 1994, pp. 387-392; G.C. Newman, H. Qi, F.E. Hospod, K. Grundhmann, Preservation of hippocampal brain slices with in vivo or in vitro hypothermia, Brain Res. 1, 1992, pp. 159-163; J.Y. Yager, J. Asseline, Effect of mild hypothermia on cerebral energy metabolism during the evolution of hypoxic ischaemic brain damage in the immature rat, Stroke, 5, 1996, pp. 919-925.]. Low temperature incubation significantly reduced cell death, now being 9% at 24 h and 14% at 67 h. Our results show that these models of moderate mechanical trauma using organotypic slice cultures can be used to study neurodegeneration and neuroprotective strategies.


European Journal of Neuroscience | 1999

Type III intermittency in human partial epilepsy

J. L. Perez Velazquez; Houman Khosravani; Andres M. Lozano; Berj L. Bardakjian; Peter L. Carlen; Richard Wennberg

A rigorous characterization of the dynamic regimes underlying human seizures is needed to understand, and possibly control, the transition to seizure. Intra‐ or extracranial brain electrical activity was recorded in five patients with partial epilepsy, and the interictal and ictal activity analysed to determine the dynamics of seizures. We constructed first‐return one‐dimensional maps by fitting the scatter plots of interpeak intervals. The features of the mapping indicated that type III intermittency is the dynamic charateristic of the ictal events. This was confirmed using histograms of the durations of the regular phases during seizures. The intermittent regime explains the abrupt transitions observed during ictal events in terms of transient stabilization of the unstable steady state.


International Journal of Psychophysiology | 2009

Decreased brain coordinated activity in autism spectrum disorders during executive tasks: Reduced long-range synchronization in the fronto-parietal networks

J. L. Perez Velazquez; Francisco Barceló; Y. Hung; Yevgen Leshchenko; Vera Nenadovic; Jason Belkas; V. Raghavan; J. Brian; L. Garcia Dominguez

Current theories of brain function propose that the coordinated integration of transient activity patterns in distinct brain regions is the essence of brain information processing. The behavioural manifestations of individuals with autism spectrum disorders (ASD) suggest that their brains have a different style of information processing. Specifically, a current trend is to invoke functional disconnection in the brains of individuals with ASD as a possible explanation for some atypicalities in the behaviour of these individuals. Our observations indicate that the coordinated activity in brains of children with autism is lower than that found in control participants. Disruption of long-range phase synchronization among frontal, parietal and occipital areas was found, derived from magnetoencephalographic (MEG) recordings, in high-functioning children with ASD during the performance of executive function tasks and was associated with impaired execution, while enhanced long-range brain synchronization was observed in control children. Specifically, a more significant prefrontal synchronization was found in control participants during task performance. In addition, a robust enhancement in synchrony was observed in the parietal cortex of children with ASD relative to controls, which may be related to parietal lobe abnormalities detected in these individuals. These results, using synchronization analysis of brain electrical signals, provide support for the contention that brains of individuals with autism may not be as functionally connected as that of the controls, and may suggest some therapeutic interventions to improve information processing in specific brain areas, particularly prefrontal cortices.


Developmental Brain Research | 1996

Development of astrocytes and neurons in cultured brain slices from mice lacking connexin43

J. L. Perez Velazquez; Marina Frantseva; Christian Naus; John F. Bechberger; S.C. Juneja; A. Velumian; Peter L. Carlen; G.M. Kidder; L.R. Mills

Astrocyte and neuronal development was investigated in organotypic brain slice cultures from mouse fetuses with a null mutation in the connexin43 gene. Astrocyte morphology and electrical properties were indistinguishable in null mutant slices and control slices but at 18 days in vitro astrocyte density in the central regions of the null mutant slices was significantly higher than in control slices. Neuronal development assessed morphologically and electrophysiologically appeared normal in the mutant slices. These results suggest that intercellular communication mediated through connexin43 is not essential for the development of astrocytes and neurons but may play a role in regulating astrocytic migration.


Clinical Neurophysiology | 2005

EEG nonstationarity during intracranially recorded seizures : statistical and dynamical analysis

T. Dikanev; D. A. Smirnov; Richard Wennberg; J. L. Perez Velazquez; Boris P. Bezruchko

OBJECTIVE The investigation of nonstationarity in complex, multivariable signals, such as electroencephalographic (EEG) recordings, requires the application of different and novel approaches to analysis. In this study, we have divided the EEG recordings during epileptic seizures into sequential stages using spectral and statistical analysis, and have as well reconstructed discrete-time models (maps) that reflect dynamical (deterministic) properties of the EEG voltage time series. METHODS Intracranial human EEG recordings with epileptic seizures from three different subjects with medically intractable temporal lobe epilepsy were studied. The methods of statistical (power spectra, wavelet spectra, and one-dimensional probability distribution functions) and dynamical (comparison of dynamical models) nonstationarity analysis were applied. RESULTS Dynamical nonstationarity analysis revealed more detailed inner structure within the seizures than the statistical analysis. Three or four stages with different dynamics are typically present within seizures. The difference between interictal activity and seizure events was also more evident through dynamical analysis. CONCLUSIONS Nonstationarity analysis can reveal temporal structure within an epileptic seizure, which could further understanding of how seizures evolve. The method could also be used for identification of seizure onset. SIGNIFICANCE Our approach reveals new information about the temporal structure of seizures, which is inaccessible using conventional methods.


Neuroscience | 2000

Mitochondrial porin required for ischemia-induced mitochondrial dysfunction and neuronal damage

J. L. Perez Velazquez; Marina Frantseva; D.V Huzar; Peter L. Carlen

The precise molecular events of mitochondrial dysfunction, one of the last steps that irreversibly determines cellular degeneration and death, remain unknown. We introduce a novel strategy to isolate and assess the molecular mechanisms underlying mitochondrial dysfunction. Using an in vitro ischemia model, we obtained evidence for prolonged mitochondrial depolarization in rat organotypic hippocampal brain slices during reperfusion. Then, mitochondria were isolated from brain slices and mitochondrial proteins were purified on a cyclosporin-A affinity column. Cyclosporin-A is the most potent inhibitor of mitochondrial dysfunction, in particular the mitochondrial permeability transition, and therefore we hypothesized that it may interact with proteins involved in the permeability transition after mitochondria were subjected to manipulations that promote this event. Mitochondrial porin was reproducibly eluted from the affinity column using proteins from ischemic brain mitochondria, or from mitochondria exposed to oxidative stress that were used as a positive control. Anti-porin antibodies prevented mitochondrial depolarization and electrophysiological deterioration of hippocampal neurons during hypoxia-reperfusion, as measured by simultaneous fluorescence imaging and whole-cell recordings. These observations provide biochemical and functional evidence that porin is directly involved in mitochondrial dysfunction and neuronal impairment during ischemia-reperfusion, and indicate that porin could be a novel therapeutic target to prevent cellular degeneration.


Chaos | 2005

Estimation of coupling between oscillators from short time series via phase dynamics modeling: Limitations and application to EEG data

D. A. Smirnov; M. B. Bodrov; J. L. Perez Velazquez; Richard A. Wennberg; Boris P. Bezruchko

We demonstrate in numerical experiments that estimators of strength and directionality of coupling between oscillators based on modeling of their phase dynamics [D. A. Smirnov and B. P. Bezruchko, Phys. Rev. E 68, 046209 (2003)] are widely applicable. Namely, although the expressions for the estimators and their confidence bands are derived for linear uncoupled oscillators under the influence of independent sources of Gaussian white noise, they turn out to allow reliable characterization of coupling from relatively short time series for different properties of noise, significant phase nonlinearity of the oscillators, and nonvanishing coupling between them. We apply the estimators to analyze a two-channel human intracranial epileptic electroencephalogram (EEG) recording with the purpose of epileptic focus localization.


Neuroscience | 2009

Excitability and gap junction–mediated mechanisms in nucleus accumbens regulate self-stimulation reward in rats

Larysa Kokarovtseva; T. Jaciw-Zurakiwsky; R. Mendizabal Arbocco; Marina Frantseva; J. L. Perez Velazquez

The nucleus accumbens (Acb) is a part of the striatum which integrates information from cortical and limbic brain structures, and mediates behaviors which reinforce reward. Previous work has suggested that neuronal synchrony mediated by gap junctions in Acb-related areas is involved in brain pleasure and reward. In order to gain insight into functional aspects of the neural information processing at the level of the striatum, we explored the possible role of Acb gap junctional communication and chemical synapses on reward self-stimulation in rats using positive reinforcement. Rats were trained to press a lever that caused an electrical current to be delivered into the hypothalamus, which is recognized to cause pleasure/reward. Intracerebral infusion into the Acb of the gap junctional blocker carbenoxolone (CBX) decreased the lever-pressing activity. Considering that the net effect of blocking gap junctions is a reduced synchronized output of the cellular activities, which at some level represents a decrease in excitability, two other inhibitors of neuronal excitability, carbamazepine (CBZ) and tetrodotoxin (TTX), were infused into the Acb and their effects on lever-pressing assessed. All manipulations that diminished excitability in the Acb resulted in reduced lever-pressing activity. CBX and TTX were also infused into motor cortex mediating forelimb lever-pressing with no effect. However, a manipulation that has the net effect of increasing excitation, the infusion of the opiate antagonist naloxone, also decreased significantly brain self-stimulation. We conclude that reward behaviors depend to a great extent on both excitability and gap junction-mediated mechanisms in Acb neuronal networks. Thus, the Acb provides a site for the study of pleasure/reward, addiction and conscious experience.


Neuroscience | 2001

Artificial electrotonic coupling affects neuronal firing patterns depending upon cellular characteristics.

J. L. Perez Velazquez; Peter L. Carlen; Frances K. Skinner

While there have been numerous theoretical studies indicating that electrotonic coupling via gap junctions interacts with the intrinsic characteristics of the coupled neurons to modify their electrical behaviour, little experimental evidence has been provided in coupled mammalian neurons. Using an artificial electrotonic junction, two distant uncoupled neurons were coupled through the computer, and the coupling conductance was varied. Tonically firing CA1 hippocampal pyramidal neurons reduced their spike firing frequency when coupled to thalamic or pyramidal cells, showing that the electrical coupling can be considered as a low-pass filter. The strength of coupling needed to entrain spike bursts of pyramidal neurons was considerably lower than the coupling needed to synchronize two neurons with different cellular characteristics (thalamic and pyramidal cells). Coupling promoted burst firing in a non-bursting cell if it was coupled to a spontaneously bursting neuron. These results support modelling studies that indicate a role for gap-junctional coupling in the synchronization of neuronal firing and the expression of low-frequency bursting.

Collaboration


Dive into the J. L. Perez Velazquez's collaboration.

Top Co-Authors

Avatar

Peter L. Carlen

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge