Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Laporta is active.

Publication


Featured researches published by J. Laporta.


Journal of Dairy Science | 2017

Effect of nutritional immunomodulation and heat stress during the dry period on subsequent performance of cows

Thiago F. Fabris; J. Laporta; Fabiana N. Corra; Yazielis M. Torres; David J. Kirk; Derek J. McLean; James D. Chapman; G.E. Dahl

Heat stress in dairy cows during the dry period impairs milk yield in the next lactation. Feeding OmniGen-AF (OG; Phibro Animal Health Corp., Teaneck, NJ) to lactating cows during heat stress may increase dry matter intake (DMI) and lowers respiration rate (RR) and rectal temperature (RT), but the effects in dry cows are not known. We hypothesized that OG supplementation before, during, and after the dry period (approximately 160 d total) would overcome the effects of heat stress and improve cow performance in the next lactation. Cows were randomly assigned to OG or control (placebo) treatments for the last 60 d in milk (DIM), based on mature-equivalent milk yield in the previous lactation. Cows were dried off 45 d before expected calving and randomly assigned to heat stress (HT) or cooling (CL) treatments. Thus, cows received dietary supplementation during late lactation before they were exposed to either CL or HT. After dry-off, treatment groups included heat stress with placebo (HT, only shade, 56 g/d of placebo, n = 17), HT with OG supplementation (HTOG, 56 g/d of OG, n = 19), cooling with placebo (CL, shade, fans, and soakers, 56 g/d of placebo, n = 16), and CL with OG supplementation (CLOG, 56 g/d of OG, n = 11). After parturition, all cows were kept under the same CL system and management, and all cows continued to receive OG or control treatment until 60 DIM. Cooling cows during the dry period reduced afternoon RT (CL vs. HT; 38.9 ± 0.05 vs. 39.3 ± 0.05°C) and RR (CL vs. HT; 45 ± 1.6 vs. 77 ± 1.6 breaths/min). Respiration rate was also decreased by OG supplementation under HT conditions (HTOG vs. HT; 69.7 ± 1.6 vs. 77.2 ± 1.6 breaths/min). An interaction was observed between OG supplementation and HT; HTOG cows tended to have lower morning RT compared with HT cows. During the dry period, OG reduced DMI relative to control cows. Birth weight was greater in calves from CL cows (CL vs. HT; 40.6 ± 1.09 vs. 38.7 ± 1.09 kg). No differences were detected among treatments in hematocrit, total protein, and body condition score. Cows offered CLOG, CL, and HTOG treatments had greater body weight during the dry period (794.9 ± 17.9, 746.8 ± 16.7, and 762.9 ± 14.9 kg, respectively) than HT cows (720 ± 16.2 kg). Gestation length was approximately 4 d longer for CL cows compared with HT cows. Cows offered CLOG, CL, and HTOG treatments produced more milk (41.3 ± 1.6, 40.7 ± 1.6, and 40.5 ± 1.6 kg/d, respectively) than HT treatment (35.9 ± 1.6 kg/d). Body weight after parturition and DMI were evaluated up to 60 DIM and averaged 661.5 ± 15.8 and 19.4 ± 0.7 kg/d, respectively, with no differences observed among treatments. These results confirm that exposure of dry cows to heat stress negatively affects milk yield in the subsequent lactation. Active cooling of dry cows and OG supplementation can reduce the negative effects of heat stress in the dry period on subsequent performance.


Journal of Dairy Science | 2016

Short communication: Effect of maternal heat stress in late gestation on blood hormones and metabolites of newborn calves

J. Guo; A.P.A. Monteiro; X. Weng; B.M. Ahmed; J. Laporta; M.J. Hayen; G.E. Dahl; J.K. Bernard; S. Tao

Maternal heat stress alters immune function of the offspring, as well as metabolism and future lactational performance, but its effect on the hormonal and metabolic responses of the neonate immediately after birth is still not clear. The objective of this study was to investigate the blood profiles of hormones and metabolites of calves born to cows that were cooled (CL) or heat-stressed (HS) during the dry period. Within 2 h after birth, but before colostrum feeding, blood samples were collected from calves [18 bulls (HS: n=10; CL: n=8) and 20 heifers (HS: n=10; CL: n=10)] born to CL or HS dry cows, and hematocrit and plasma concentrations of total protein, prolactin, insulin-like growth factor-I, insulin, glucose, nonesterified fatty acid, and β-hydroxybutyrate were measured. Compared with CL, HS calves had lower hematocrit and tended to have lower plasma concentrations of insulin, prolactin, and insulin-like growth factor-I. However, maternal heat stress had no effect on plasma levels of total protein, glucose, fatty acid, and β-hydroxybutyrate immediately after birth. These results suggest that maternal heat stress desensitizes a calfs stress response and alters the fetal development by reducing the secretion of insulin-like growth factor-I, prolactin, and insulin.


Journal of Dairy Science | 2017

In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves

J. Laporta; Thiago F. Fabris; Amy L. Skibiel; Jessi L. Powell; M.J. Hayen; K.C. Horvath; E.K. Miller-Cushon; G.E. Dahl

Exposure to heat stress during late gestation exerts negative carryover effects on the postnatal performance of the calf. In this study, we evaluated the health, growth, and activity patterns of calves born to cows exposed to heat stress (HT, provided only shade, n = 31) or cooling (CL, fans, soakers, and shade, n = 29) during late gestation (∼46 d, maternal dry period). Calves body weight, rectal temperature, suckling reflex, and movement scores were recorded at birth, and calves were fed 6.6 L of maternal colostrum in 2 meals. Blood samples were collected at birth (before feeding), 24 h after birth, and at d 10 and 28 of age. Calves were housed in individual pens, fed pasteurized milk (6 L/d), and had ad libitum access to grain and water until weaning (49 d). Activity was assessed during the first week of life (wk 1), at weaning (wk 7), and in the first week postweaning (wk 8) using electronic data loggers. Health and body weight were monitored weekly. At birth, calves born to CL cows were heavier (41.9 vs. 39.1 ± 0.8 kg), their temperature was lower (38.9 vs. 39.3 ± 0.08°C), and they were more efficient at absorbing IgG than HT calves. Suckling reflex and movement score at birth were not different between groups, but calves born to CL cows spent more time (50 min/d) standing in the first week of life as a result of longer standing bouts. In wk 7 and 8, calves born to CL cows had less frequent standing bouts than HT heifers, but CL heifers maintained greater total daily standing time (36 min/d) due to longer (7 min/bout) standing bouts. All calves were healthy, but HT heifers tended to have higher (looser) fecal scores on d 10. Heifers born from CL cows gained 0.2 kg/d more from birth to weaning, weighed 4 kg more at weaning, and had greater concentrations of IGF-1 than HT calves, particularly on d 28. In utero heat stress during late gestation had immediate and prolonged effects on passive immunity, growth, and activity patterns in dairy calves.


PLOS ONE | 2015

Transcriptomic Analysis of the Mouse Mammary Gland Reveals New Insights for the Role of Serotonin in Lactation.

J. Laporta; Francisco Peñagaricano; Laura L. Hernandez

Serotonin regulates numerous processes in the mammary gland. Our objective was to discover novel genes, pathways and functions which serotonin modulates during lactation. The rate limiting enzyme in the synthesis of non-neuronal serotonin is tryptophan-hydroxylase (TPH1). Therefore, we used TPH1 deficient dams (KO; serotonin deficient, n = 4) and compared them to wild-type (WT; n = 4) and rescue (RC; KO + 100 mg/kg 5-hydroxytryptophan injected daily, n = 4) dams. Mammary tissues were collected on day 10 of lactation. Total RNA extraction, amplification, library preparation and sequencing were performed following the Illumina mRNA-Seq. Overall, 97 and 204 genes (false discovery rate, FDR ≤ 0.01) exhibited a minimum of a 2-fold expression difference between WT vs. KO and WT vs. RC dams, respectively. Most differentially expressed genes were related to calcium homeostasis, apoptosis regulation, cell cycle, cell differentiation and proliferation, and the immune response. Additionally, gene set enrichment analysis using Gene Ontology and Medical Subject Headings databases revealed the alteration of several biological processes (FDR ≤ 0.01) including fat cell differentiation and lipid metabolism, regulation of extracellular signal-related kinase and mitogen-activated kinase cascades, insulin resistance, nuclear transport, membrane potential regulation, and calcium release from the endoplasmic reticulum into the cytosol. The majority of the biological processes and pathways altered in the KO dams are central for mammary gland homeostasis. Increasing peripheral serotonin in the RC dams affects specific pathways that favor lactation. Our data confirms the importance of serotonin during lactation in the mammary gland.


Journal of Dairy Science | 2017

Effects of feeding an immunomodulatory supplement to heat-stressed or actively cooled cows during late gestation on postnatal immunity, health, and growth of calves

Amy L. Skibiel; Thiago F. Fabris; Fabiana N. Corrá; Yazielis M. Torres; Derek J. McLean; James D. Chapman; David J. Kirk; G.E. Dahl; J. Laporta

Heat stress during late gestation negatively affects the physiology, health, and productivity of dairy cows as well as the calves developing in utero. Providing cows with active cooling devices, such as fans and soakers, and supplementing cows with an immunomodulating feed additive, OmniGen-AF (OG; Phibro Animal Health Corporation), improves immune function and milk yield of cows. It is unknown if maternal supplementation of OG combined with active cooling during late gestation might benefit the developing calf as well. Herein we evaluated markers of innate immune function, including immune cell counts, acute phase proteins, and neutrophil function, of calves born to multiparous dams in a 2 × 2 factorial design. Dams were supplemented with OG or a bentonite control (NO) beginning at 60 d before dry off and exposed to heat stress with cooling (CL) or without active cooling (HT) during the dry period (∼46 d). At birth, calves were separated from their dams and fed 6.6 L of their dams colostrum in 2 meals. Calf body weight and rectal temperature were recorded, and blood samples were collected at birth (before colostrum feeding) and at 10, 28, and 49 d of age. Calves born to either CL dams or OG dams were heavier at birth than calves born to HT or NO dams, respectively. Concentrations of serum amyloid A were higher in the blood of calves born to OG dams relative to NO and for HT calves relative to CL calves. In addition, calves born to cooled OG dams had greater concentrations of plasma haptoglobin than calves born to cooled control dams. Neutrophil function at 10 d of age was enhanced in calves born to cooled OG dams and lymphocyte counts were higher in calves born to OG dams. Together these results suggest that adding OG to maternal feed in combination with active cooling of cows during late gestation is effective in mitigating the negative effects of in utero heat stress on postnatal calf growth and immune competence.


Journal of Animal Science | 2017

TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Late gestation heat stress of dairy cattle programs dam and daughter milk production1

G.E. Dahl; S. Tao; J. Laporta

Anticipated increases in the world population to 9 billion people will lead to increased demand for food. Dairy products represent one of the most sustainable animal sources of food protein because ruminants can utilize byproduct and forage feeds unsuitable for human consumption. Continued improvements in productivity will depend on deeper understanding of the biology of lactation, including developmental programming of tissues critical to that process. Although prenatal programming of postnatal phenotype is well documented for growth, behavior, and disease, there may also be instances of programming that last for a specific physiological stage (e.g., lactation). We distinguish between these 2 terms by the use of developmental programming to describe a permanent effect, whereas the more general term is used to describe nonpermanent impacts on the mammary gland. Despite this complexity, here we review the evidence that exposure to elevated temperature and humidity during late gestation can program reduced yields in the subsequent lactation, largely through effects at the mammary gland. Furthermore, we provide emerging evidence that adult capacity for milk synthesis can be programmed in the calf that dam is carrying by events during fetal life occurring 2 yr before. Specifically, calves born to dams that are heat stressed for the final 6 wk of gestation produce 19% less milk in lactation relative to calves from dams provided with evaporative cooling. Importantly, the increased milk yield in animals derived from dams under evaporative cooling occurred without a greater decline in BW that accompanies negative energy balance during early lactation. Therefore, the increase in milk production suggests an increase in the efficiency of conversion of feed to milk. These data indicate that a brief period of heat stress late in development reduces the physiological efficiency of the cow in a coordinated manner to result in a substantial decline in productivity. It is likely that this programming effect would be observed across genetic lines and result in poor sustainability of milk production. Milk will continue to be an important source of high-quality, human-edible food and technologies that improve the efficiency of production will be critical to enhance sustainability. These data provide compelling support for the concept that programming impacts on the dam and the developing fetus will play a role in optimizing the efficiency of production.


Journal of Dairy Science | 2017

Effects of the level and duration of maternal diets with negative dietary cation-anion differences prepartum on calf growth, immunity, and mineral and energy metabolism

C. Collazos; C. Lopera; J.E.P. Santos; J. Laporta

The objectives were to investigate the effects that maternal diets containing negative dietary cation-anion differences (DCAD) fed in the last 42 d of gestation may have on the acid-base status, hematology, mineral and energy metabolism, growth, and health of calves. The experiment was a randomized block design with a 2 × 2 factorial arrangement of 2 levels of negative DCAD (-70 or -180 mEq/kg) and 2 feeding durations (the last 21 d prepartum and the last 42 d prepartum). Bulls and heifers (n = 60) born to these dams were weighted at birth and fed 3.8 L of colostrum for their first feeding, and only heifers (n = 44, 9-12/treatment) were kept thereafter. Heifer body weight was also recorded at 21 d, 42 d, 62 d, 3 mo, and 6 mo of age. Blood was collected at birth, before colostrum feeding, and at 1, 2, 3, 21, and 42 d of age and assayed for minerals, metabolites, and cell counts. Heifers born to dams fed the last 42 d prepartum weighed 2.8 and 4.8 kg less at birth and 62 d, respectively, compared with calves born to dams fed the last 21 d prepartum; however, body weight at 3 and 6 mo of age was similar. Concentrations of ionized calcium did not differ among treatments at birth, but heifers born to -180 DCAD dams had increased blood concentrations at 3 d of age, whereas those born to -70 DCAD dams did not. At birth, heifers born to -180 DCAD dams experienced a subtle and transient metabolic acidosis (pH = 7.33 ± 0.02; pCO2 = 53.0 ± 2.4 mmHg; HCO3- = 27.6 ± 0.7 mmol/L) compared with the more evident metabolic acidosis observed in those born to -70 DCAD cows (pH = 7.28 ± 0.02; pCO2 = 59.3 ± 2.4 mmHg; HCO3- = 27.8 ± 0.7 mmol/L). Heifers born to -180 DCAD dams had reduced concentrations of β-hydroxybutric acid and nonesterified fatty acids compared with those born to -70 DCAD dams. Efficiency of IgG transfer from colostrum into blood and serum concentrations did not differ among treatments. There was no relationship between measures of metabolic acidosis and measures of efficiency of IgG absorption. Percentage of lymphocytes and neutrophils was altered by maternal treatments; however, treatments did not affect calf morbidity. Extending the duration of feeding up to 42 d or reducing the level of negative DCAD to -180 mEq/kg in maternal diets exerted a transient metabolic acidosis in the calves and slightly affected measures of mineral, energy metabolism, and growth.


Scientific Reports | 2018

RNA-Seq reveals novel genes and pathways involved in bovine mammary involution during the dry period and under environmental heat stress

Bethany Dado-Senn; Amy L. Skibiel; Thiago F. Fabris; Yuxin Zhang; G.E. Dahl; Francisco Peñagaricano; J. Laporta

The bovine dry period is a dynamic non-lactating phase where the mammary gland undergoes extensive cellular turnover. Utilizing RNA sequencing, we characterized novel genes and pathways involved in this process and determined the impact of dry period heat stress. Mammary tissue was collected before and during the dry period (−3, 3, 7, 14, and 25 days relative to dry-off [day 0]) from heat-stressed (HT, nu2009=u20096) or cooled (CL, nu2009=u20096) late-gestation Holstein cows. We identified 3,315 differentially expressed genes (DEGs) between late lactation and early involution, and 880 DEGs later in the involution process. DEGs, pathways, and upstream regulators during early involution support the downregulation of functions such as anabolism and milk component synthesis, and upregulation of cell death, cytoskeleton degradation, and immune response. The impact of environmental heat stress was less significant, yet genes, pathways, and upstream regulators involved in processes such as ductal branching morphogenesis, cell death, immune function, and protection against tissue stress were identified. Our research advances understanding of the mammary gland transcriptome during the dry period, and under heat stress insult. Individual genes, pathways, and upstream regulators highlighted in this study point towards potential targets for dry period manipulation and mitigation of the negative consequences of heat stress on mammary function.


Scientific Reports | 2018

In Utero Heat Stress Alters the Offspring Epigenome

Amy L. Skibiel; Francisco Peñagaricano; R. Amorín; B. M. Ahmed; G.E. Dahl; J. Laporta

Exposure to intrauterine heat stress during late gestation affects offspring performance into adulthood. However, underlying mechanistic links between thermal insult in fetal life and postnatal outcomes are not completely understood. We examined morphology, DNA methylation, and gene expression of liver and mammary gland for bull calves and heifers that were gestated under maternal conditions of heat stress or cooling (i.e. in utero heat stressed vs. in utero cooled calves). Mammary tissue was harvested from dairy heifers during their first lactation and liver from bull calves at birth. The liver of in utero heat stressed bull calves contained more cells and the mammary glands of in utero heat stressed heifers were comprised of smaller alveoli. We identified more than 1,500 CpG sites differently methylated between maternal treatment groups. These CpGs were associated with approximately 400 genes, which play a role in processes, such as development, innate immune defense, cell signaling, and transcription and translation. We also identified over 100 differentially expressed genes in the mammary gland with similar functions. Interestingly, fifty differentially methylated genes were shared by both bull calf liver and heifer mammary gland. Intrauterine heat stress alters the methylation profile of liver and mammary DNA and programs their morphology in postnatal life, which may contribute to the poorer performance of in utero heat stressed calves.


PLOS ONE | 2018

In utero exposure to thermal stress has long-term effects on mammary gland microstructure and function in dairy cattle

Amy L. Skibiel; Bethany Dado-Senn; Thiago F. Fabris; G.E. Dahl; J. Laporta

Earth’s rising temperature has substantial repercussions for food-producing animals by increasing morbidity and mortality, diminishing reproductive potential, and reducing productivity. In the dairy industry this equates to massive losses in milk yield, which occur when cows are exposed to heat stress during lactation or during the non-lactating period between lactations (i.e. dry period). Furthermore, milk yield is significantly lower in first-lactation heifers that experienced fetal heat stress. The mechanisms underlying intrauterine effects of heat stress on the offspring’s future lactation have yet to be fully elucidated. We hypothesize that heat stress experienced through the intrauterine environment will alter the mammary gland microstructure and cellular processes involved in cell turnover during the cow’s first lactation. Mammary biopsies were collected from first-lactation heifers that were exposed to heat stress or cooling conditions while developing in utero (IUHT and IUCL; respectively, n = 9–10). IUHT heifers produced less milk compared to IUCL. The mammary glands of IUHT heifers differed morphologically from IUCL, with the IUHT heifers having smaller alveoli and a greater proportion of connective tissue relative to their IUCL herdmates. However, intrauterine heat stress had little impact on the proliferation and apoptosis of mammary cells during lactation. Our results indicate that fetal exposure to heat stress impairs milk production in the first lactation, in part, by inducing aberrant mammary morphology. This may result from alterations in the developmental trajectory of the fetal mammary gland that persist through the first lactation rather than to alterations in the cellular processes controlling mammary cell turnover during lactation.

Collaboration


Dive into the J. Laporta's collaboration.

Top Co-Authors

Avatar

G.E. Dahl

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Tao

University of Georgia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura L. Hernandez

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge