Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura L. Hernandez is active.

Publication


Featured researches published by Laura L. Hernandez.


Breast Cancer Research | 2009

Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival

Vaibhav P. Pai; Aaron M. Marshall; Laura L. Hernandez; Arthur R. Buckley; Nelson D. Horseman

IntroductionThe breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers.MethodsSerotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells.ResultsIn the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation.ConclusionsOur data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs through uncoupling of serotonin from the homeostatic regulatory mechanisms of the normal mammary epithelium. The findings open a new avenue for identification of diagnostic and prognostic markers, and valuable new therapeutic targets for managing breast cancer.


Journal of Dairy Science | 2008

Evaluation of Serotonin as a Feedback Inhibitor of Lactation in the Bovine

Laura L. Hernandez; C. M. Stiening; J.B. Wheelock; L. H. Baumgard; Anne M. Parkhurst; R. J. Collier

Serotonin (5-HT), a neurotransmitter synthesized from tryptophan, has been proposed as a feedback inhibitor of lactation. We determined that the gene coding for tryptophan hydroxylase 1, the rate-limiting enzyme for 5-HT synthesis, is expressed in bovine mammary epithelial cells in vitro and is upregulated by prolactin. In addition, 5-HT reduced the expression of alpha-lactalbu-min and casein genes in vitro. Furthermore, inhibiting 5-HT synthesis with p-chlorophenylalanine or blocking the 5-HT receptor with methysergide (METH) increased milk protein gene expression. We then evaluated effects of intramammary 5-HT or METH infusion on production and milk composition in 6 multiparous Holstein cows. Cows were assigned to a repeated measures design of contralateral intramammary infusions of METH (20 mg/quarter per d) or saline for 3 d followed by a 7-d washout period before administering 5-HT (50 mg/quarter/d) or SAL for 3 d. For each udder half, milk yield was recorded twice and composition was determined once per day. Blood samples were harvested each day for plasma to determine glucose and nonesterified fatty acid concentrations. Evaporative heat loss, respiration rate, left and right udder temperatures, and rectal temperatures were obtained after each milking to evaluate possible systemic effects of infusions. During METH and saline infusions milk yield increased 10.9%. During 5-HT and saline infusion milk yield decreased 11.1%. Milk yield and physiological responses suggested intramammary 5-HT and METH doses were high enough to cause systemic effects. Infusing saline, METH, and 5-HT increased milk SCC. Infusing 5-HT tended to reduce mean lactose concentration (4.3 vs. 4.6%) relative to saline. Milk protein content was decreased by METH and SAL (2.0%) and was increased (5.8%) by 5-HT followed by a 33% decrease postinfusion. Infusion of METH increased evaporative heat loss 11%, which decreased 11% postinfusion. Infusions of 5-HT or METH did not affect plasma nonesterified fatty acid or glucose concentrations, respiration rate, or milk fat content. We conclude 5-HT infusion reduced milk synthesis, whereas blocking the 5-HT receptor with METH increased milk synthesis. Doses of 5-HT and METH used in this study likely resulted in systemic effects. These data support the concept that 5-HT is a feedback inhibitor of lactation in the bovine.


American Journal of Physiology-endocrinology and Metabolism | 2012

Mammary gland serotonin regulates parathyroid hormone-related protein and other bone-related signals.

Laura L. Hernandez; Karen A. Gregerson; Nelson D. Horseman

Breast cells drive bone demineralization during lactation and metastatic cancers. A shared mechanism among these physiological and pathological states is endocrine secretion of parathyroid hormone-related protein (PTHrP), which acts through osteoblasts to stimulate osteoclastic bone demineralization. The regulation of PTHrP has not been accounted for fully by any conventional mammotropic stimuli or tumor growth factors. Serotonin (5-HT) synthesis within breast epithelial cells is induced during lactation and in advancing breast cancer. Here we report that serotonin deficiency (knockout of tryptophan hydroxylase-1) results in a reduction of mammary PTHrP expression during lactation, which is rescued by restoring 5-HT synthesis. 5-HT induced PTHrP expression in lactogen-primed mammary epithelial cells from either mouse or cow. In human breast cancer cells 5-HT induced both PTHrP and the metastasis-associated transcription factor Runx2/Cbfa1. Based on receptor expression and pharmacological evidence, the 5-HT2 receptor type was implicated as being critical for induction of PTHrP and Runx2. These results connect 5-HT synthesis to the induction of bone-regulating factors in the normal mammary gland and in breast cancer cells.


The Journal of Clinical Endocrinology and Metabolism | 2010

Serotonin Transport and Metabolism in the Mammary Gland Modulates Secretory Activation and Involution

Aaron M. Marshall; Laurie A. Nommsen-Rivers; Laura L. Hernandez; Kathryn G. Dewey; Caroline J. Chantry; Karen A. Gregerson; Nelson D. Horseman

CONTEXT Serotonin [5-hydroxytryptamine (5-HT)] is an important local regulator of lactation homeostasis; however, the roles for the serotonin reuptake transporter and monoamine oxidase have not been known. OBJECTIVE The aim of the study was to determine whether drugs that impact 5-HT affect human lactation physiology. DESIGN AND SETTING We conducted laboratory studies of human and animal models and an observational study of the onset of copious milk secretion in postpartum women at a university medical center. PARTICIPANTS We studied women expecting their first live-born infant; exclusion criteria were: referred to the medical center for another medical condition, known contraindication to breastfeed, and less than 19 yr of age and unable to obtain parental consent. INTERVENTION(S) The mothers were interviewed. The cell and animal studies consisted of a variety of biochemical, pharmacological, and genetic interventions. MAIN OUTCOME MEASURE(S) The human subjects outcome was prevalence of delayed onset of copious milk secretion. The cell and animal outcomes were physiological and morphological. RESULTS Inhibiting serotonin reuptake in mammary epithelial cells altered barrier function, and the effects were amplified by coadministering a monoamine oxidase inhibitor. Direct delivery of fluoxetine by slow-release pellets caused localized involution. TPH1 knockout mice displayed precocious secretory activation. Among a cohort of 431 women, those taking SSRI were more likely (P = 0.02) to experience delayed secretory activation. CONCLUSIONS Medications that perturb serotonin balance dysregulate lactation, and the effects are consistent with those predicted by the physiological effects of intramammary 5-HT bioactivity. Mothers taking serotonergic drugs may need additional support to achieve their breastfeeding goals.


Journal of Endocrinology | 2009

The bovine mammary gland expresses multiple functional isoforms of serotonin receptors

Laura L. Hernandez; Sean W. Limesand; J.L. Collier; Nelson D. Horseman; R. J. Collier

Recent studies in dairy cows have demonstrated that serotonergic ligands affect milk yield and composition. Correspondingly, serotonin (5-HT) has been demonstrated to be an important local regulator of lactational homeostasis and involution in mouse and human mammary cells. We determined the mRNA expression of bovine 5-HT receptor (HTR) subtypes in bovine mammary tissue (BMT) and used pharmacological agents to evaluate functional activities of 5-HT receptors. The mRNAs for five receptor isoforms (HTR1B, 2A, 2B, 4, and 7) were identified by conventional real-time (RT)-PCR, RT quantitative PCR, and in situ hybridization in BMT. In addition to luminal mammary epithelial cell expression, HTR4 was expressed in myoepithelium, and HTR1B, 2A, and 2B were expressed in small mammary blood vessels. Serotonin suppressed milk protein mRNA expression (α-lactalbumin and β-casein mRNA) in lactogen-treated primary bovine mammary epithelial cell (BMEC) cultures. To probe the functional activities of individual receptors, caspase-3 activity and expression of α-lactalbumin and β-casein were measured. Both SB22489 (1B antagonist) and ritanserin (2A antagonist) increased caspase-3 activity. Expression of α-lactalbumin and β-casein mRNA levels in BMEC were stimulated by low concentrations of SB224289, ritanserin, or pimozide. These results demonstrate that there are multiple 5-HT receptor isoforms in the bovine mammary gland, and point to profound differences between serotonergic systems of the bovine mammary gland and the human and mouse mammary glands. Whereas human and mouse mammary epithelial cells express predominately the protein for the 5-HT7 receptor, cow mammary epithelium expresses multiple receptors that have overlapping, but not identical, functional activities.


Domestic Animal Endocrinology | 2012

Serotonin as a homeostatic regulator of lactation

R. J. Collier; Laura L. Hernandez; Nelson D. Horseman

Serotonin (5-HT), a neurotransmitter produced in mammary epithelial cells (MECs), acts via autocrine-paracrine mechanisms on MECs to regulate milk secretion in a variety of species. Recent studies in dairy cows reported that 5-HT ligands affect milk yield and composition. We determined the mRNA expression of bovine 5-HT receptor (5-HTR) subtypes in bovine mammary tissue (BMT) and cultured bovine MECs. We then used pharmacologic agents to evaluate functional activities of 5-HTR subtypes. The mRNAs for five receptor isoforms (5-HTR1B, 5-HTR2A, 5-HTR2B, 5-HTR4, and 5-HTR7) were identified by conventional reverse transcription PCR, real-time PCR, and in situ hybridization in BMT. In addition to luminal MEC expression, 5-HTR4 was expressed in myoepithelium, and 5-HTR1B, HTR2A, and HTR2B were expressed in small mammary blood vessels. Studies to date report that there are multiple 5-HTR isoforms in mammary tissue of rodents, humans, and cattle. Inhibition of the 5-HT reuptake transporter with selective 5-HT reuptake inhibitors (SSRIs) disrupted tight junctions and decreased milk protein mRNA expression in mouse, human, and bovine mammary cells. Selective 5-HT reuptake inhibitors act to increase the cellular exposure to 5-HT by preventing reuptake of 5-HT by the cell and eventual degradation. Increasing 5-HT concentration in milk via inhibiting its reuptake (SSRI), or by increasing the precursor for 5-HT synthesis 5-hydroxytryptophan, accelerated decline in milk synthesis at dry-off. We conclude that the 5-HT system in mammary tissue acts as a homeostatic regulator of lactation.


PLOS ONE | 2012

High Fat Diet Alters Lactation Outcomes: Possible Involvement of Inflammatory and Serotonergic Pathways

Laura L. Hernandez; Bernadette E. Grayson; Ekta Yadav; Randy J. Seeley; Nelson D. Horseman

Delay in the onset of lactogenesis has been shown to occur in women who are obese, however the mechanism altered within the mammary gland causing the delay remains unknown. Consumption of high fat diets (HFD) has been previously determined to result decreased litters and litter numbers in rodent models due to a decrease in fertility. We examined the effects of feeding a HFD (60% kcal from fat) diet versus a low-fat diet (LFD; 10% kcal from fat) to female Wistar rats on lactation outcomes. Feeding of HFD diet resulted in increased pup weights compared to pups from LFD fed animals for 4 d post-partum. Lactation was delayed in mothers on HFD but they began to produce copious milk volumes beginning 2 d post-partum, and milk yield was similar to LFD by day 3. Mammary glands collected from lactating animals on HFD diet, displayed a disrupted morphologies, with very few and small alveoli. Consistently, there was a significant decrease in the mRNA expression of milk protein genes, glucose transporter 1 (GLUT1) and keratin 5 (K5), a luminobasal cell marker in the mammary glands of HFD lactating animals. Expression of tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin (5-HT) biosynthesis, and the 5-HT7 receptor (HTR7), which regulates mammary gland involution, were significantly increased in mammary glands of HFD animals. Additionally, we saw elevation of the inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF- α). These results indicate that consumption of HFD impairs mammary parenchymal tissue and impedes its ability to synthesize and secrete milk, possibly through an increase in 5-HT production within the mammary gland leading to an inflammatory process.


PLOS ONE | 2013

Serotonin (5-HT) Affects Expression of Liver Metabolic Enzymes and Mammary Gland Glucose Transporters during the Transition from Pregnancy to Lactation

J. Laporta; Tonia L. Peters; Kathryn E. Merriman; Chad M. Vezina; Laura L. Hernandez

The aim of this experiment was to demonstrate the ability of feeding serotonin (5-HT; 5-hydroxytryptamine) precursors to increase 5-HT production during the transition from pregnancy to lactation and the effects this has on maternal energy metabolism in the liver and mammary gland. Pregnant rats (n = 45) were fed one of three diets: I) control (CON), II) CON supplemented with 0.2% 5-hydroxytryptophan (5-HTP) or III) CON supplemented with 1.35% L-tryptophan (L-TRP), beginning on d13 of pregnancy through d9 of lactation (d9). Serum (pre and post-partum), milk (daily), liver and mammary gland tissue (d9) were collected. Serum 5-HT was increased in the 5-HTP fed dams beginning on d20 of gestation and remained elevated through d9, while it was only increased on d9 in the L-TRP fed dams. 5-HT levels were increased in mammary gland and liver of both groups. Additionally, 5-HTP fed dams had serum and milk glucose levels similar to the CON, while L-TRP had decreased serum (d9) and milk glucose (all dates evaluated). Feeding 5-HTP resulted in increased mRNA expression of key gluconeogenic and glycolytic enzymes in liver and glucose transporters 1 and 8 (GLUT-1, -8) in the mammary gland. We demonstrated the location of GLUT-8 in the mammary gland both in the epithelial and vascular endothelial cells. Finally, phosphorylated 5′ AMP-activated protein kinase (pAMPK), a known regulator of intracellular energy status, was elevated in mammary glands of 5-HTP fed dams. Our results suggest that increasing 5-HT production during the transition from pregnancy to lactation increases mRNA expression of enzymes involved in energy metabolism in the liver, and mRNA abundance and distribution of glucose transporters within the mammary gland. This suggests the possibility that 5-HT may be involved in regulating energy metabolism during the transition from pregnancy to lactation.


PLOS ONE | 2014

Peripheral Serotonin Regulates Maternal Calcium Trafficking in Mammary Epithelial Cells during Lactation in Mice

J. Laporta; Kimberly P. Keil; Chad M. Vezina; Laura L. Hernandez

Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood) into the ductal lumen (milk). Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT) is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1), which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2) and basolateral (CaSR, ORAI-1) membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2). Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2) are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation.


Journal of Dairy Science | 2016

Autocrine-paracrine regulation of the mammary gland1

Samantha R. Weaver; Laura L. Hernandez

The mammary gland has a remarkable capacity for regulation at a local level, particularly with respect to its main function: milk secretion. Regulation of milk synthesis has significant effects on animal and human health, at the level of both the mother and the neonate. Control by the mammary gland of its essential function, milk synthesis, is an evolutionary necessity and is therefore tightly regulated at a local level. For at least the last 60 yr, researchers have been interested in elucidating the mechanisms underpinning the mammary glands ability to self-regulate, largely without the influence from systemic hormones or signals. By the 1960s, scientists realized the importance of milk removal in the capacity of the gland to produce milk and that the dynamics of this removal, including emptying of the alveolar spaces and frequency of milking, were controlled locally as opposed to traditional systemic hormonal regulation. Using both in vitro systems and various mammalian species, including goats, marsupials, humans, and dairy cows, it has been demonstrated that the mammary gland is largely self-regulating in its capacity to support the young, which is the evolutionary basis for milk production. Local control occurs at the level of the mammary epithelial cell through pressure and stretching negative-feedback mechanisms, and also in an autocrine fashion through bioactive factors within the milk which act as inhibitors, regulating milk secretion within the alveoli themselves. It is only within the last 20 to 30 yr that potential candidates for these bioactive factors have been examined at a molecular level. Several, including parathyroid hormone-related protein, growth factors (transforming growth factor, insulin-like growth factor, epidermal growth factor), and serotonin, are synthesized within and act upon the gland and possess dynamic receptor activity resulting in diverse effects on growth, calcium homeostasis, and milk composition. This review will focus on the autocrine-paracrine regulation of the mammary gland, with an examination of both foundational work and the progress made within the last 10 to 20 yr of research.

Collaboration


Dive into the Laura L. Hernandez's collaboration.

Top Co-Authors

Avatar

Samantha R. Weaver

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chad M. Vezina

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Austin P Prichard

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kimberly P. Keil

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Thomas D. Crenshaw

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

E. Block

Princeton University

View shared research outputs
Top Co-Authors

Avatar

Helene M. Altmann

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge