J. M. Becerril
University of the Basque Country
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. M. Becerril.
Plant and Soil | 2006
J. Hernández-Allica; J. M. Becerril; O. Zárate; C. Garbisu
The ultimate goal of any soil remediation process should be not only to remove the contaminant(s) from the polluted site but to restore soil health as well. In consequence, reliable indicators of soil health are needed if we are to properly evaluate the efficiency of a soil remediation process. The aim of the current work was to determine the effect of metal phytoextraction, through the utilization of the Zn hyperaccumulator T. caerulescens, on biological parameters of soil health, on the assumption that biological indicators of soil health might be valid monitoring tools to assess the efficiency of a metal phytoextraction process. To this end, a short-term microcosm phytoextraction study was carried out, with two heavy metal polluted soils collected from an abandoned mine, to determine the effect of metal phytoextraction on soil biological parameters. Higher values of biomass C, basal respiration, substrate induced respiration, and β-glucosidase activity were observed in the presence of T. caerulescens plants, as compared to unplanted pots. Our data confirm the great capacity of T. caerulescens to phytoextract Zn from polluted soils and, interestingly, suggest that metal phytoextraction has indeed a beneficial effect on soil biological activity. It was concluded that the revegetation of these metal polluted soils with T. caerulescens could help activate their biochemical and microbial functionality.
International Journal of Phytoremediation | 2011
Oihana Barrutia; Unai Artetxe; Antonio Hernández; J. M. Olano; José Ignacio García-Plazaola; Carlos Garbisu; J. M. Becerril
Plants growing on metalliferous soils from abandoned mines are unique because of their ability to cope with high metal levels in soil. In this study, we characterized plants and soils from an abandoned Pb-Zn mine in the Basque Country (northern Spain). Soil in this area proved to be deficient in major macronutrients and to contain toxic levels of Cd, Pb, and Zn. Spontaneously growing native plants (belonging to 31 species, 28 genera, and 15 families) were botanically identified. Plant shoots and rhizosphere soil were sampled at several sites in the mine, and analyzed for Pb, Zn and Cd concentration. Zinc showed the highest concentrations in shoots, followed by Pb and Cd. Highest Zn concentrations in shoots were found in the Zn-Cd hyperaccumulator Thlaspi caerulescens (mean = 18,254 mg Zn kg−1 DW). Different metal tolerance and accumulation patterns were observed among the studied plant species, thus offering a wide germplasm assortment for the suitable selection of phytoremediation technologies. This study highlights the importance of preserving metalliferous environments as they shelter a unique and highly valuable metallicolous biodiversity.
Chemosphere | 2009
Oihana Barrutia; Lur Epelde; José Ignacio García-Plazaola; Carlos Garbisu; J. M. Becerril
Metal tolerance and phytoextraction potential of two common sorrel (Rumex acetosa L.) accessions, collected from a Pb/Zn contaminated site (CS, Lanestosa) and an uncontaminated site (UCS, Larrauri), were studied in fertilized and non-fertilized pots prepared by combining soil samples from both sites in different proportions (i.e., 0%, 33%, 66% and 100% of Lanestosa contaminated soil). The original metalliferous mine soil contained 20480, 4950 and 14 mg kg(-1) of Zn, Pb and Cd, respectively. The microcosm experiment was carried out for two months under greenhouse controlled conditions. It was found that fertilization increased mean plant biomass of both accessions as well as their tolerance. However, only the CS accession survived all treatments even though its biomass decreased proportionally according to the percentage of contaminated mine soil present in the pots. This metallicolous accession would be useful for the revegetation and phytostabilization of mine soils. Due to its high concentration and bioavailability in the contaminated soil, the highest values of metal phytoextracted corresponded to Zn. The CS accession was capable of efficiently phytoextracting metal from the 100% mine soil, indeed reaching very promising phytoextraction rates in the fertilized pots (6.8 mg plant(-1) month(-1)), similar to the ones obtained with hyperaccumulator plants. It was concluded that fertilization is certainly worth being considered for phytoextraction and revegetation with native plants from metalliferous soils.
Science of The Total Environment | 2011
Oihana Barrutia; Carlos Garbisu; Lur Epelde; M.C. Sampedro; M.A. Goicolea; J. M. Becerril
Soil contamination due to petroleum-derived products is an important environmental problem. We assessed the impacts of diesel oil on plants (Trifolium repens and Lolium perenne) and soil microbial community characteristics within the context of the rhizoremediation of contaminated soils. For this purpose, a diesel fuel spill on a grassland soil was simulated under pot conditions at a dose of 12,000 mg diesel kg(-1) DW soil. Thirty days after diesel addition, T. repens (white clover) and L. perenne (perennial ryegrass) were sown in the pots and grown under greenhouse conditions (temperature 25/18 °C day/night, relative humidity 60/80% day/night and a photosynthetic photon flux density of 400 μmol photon m(-2) s(-1)) for 5 months. A parallel set of unplanted pots was also included. Concentrations of n-alkanes in soil were determined as an indicator of diesel degradation. Seedling germination, plant growth, maximal photochemical efficiency of photosystem II (F(v)/F(m)), pigment composition and lipophylic antioxidant content were determined to assess the impacts of diesel on the studied plants. Soil microbial community characteristics, such as enzyme and community-level physiological profiles, were also determined and used to calculate the soil quality index (SQI). The presence of plants had a stimulatory effect on soil microbial activity. L. perenne was far more tolerant to diesel contamination than T. repens. Diesel contamination affected soil microbial characteristics, although its impact was less pronounced in the rhizosphere of L. perenne. Rhizoremediation with T. repens and L. perenne resulted in a similar reduction of total n-alkanes concentration. However, values of the soil microbial parameters and the SQI showed that the more tolerant species (L. perenne) was able to better maintain its rhizosphere characteristics when growing in diesel-contaminated soil, suggesting a better soil health. We concluded that plant tolerance is of crucial importance for the recovery of soil health during rhizoremediation of contaminated soils.
Planta | 2010
Beatriz Fernández-Marín; J. M. Becerril; José Ignacio García-Plazaola
Desiccation-tolerance ability in photosynthetic organisms is largely based on a battery of photoprotective mechanisms. Xanthophyll cycle operation induced by desiccation in the absence of light has been previously proven in the desiccation-tolerant fern Ceterach officinarum. To understand the physiological function of xanthophyll cycle induction in darkness and its implication in the desiccation tolerance in more detail, we studied its triggering factors and its photochemical effects in the lichen Lobaria pulmonaria. We found that both the drying rate and the degree of desiccation play a crucial role in the violaxanthin de-epoxidase activation. De-epoxidation of violaxanthin to zeaxanthin (Z) occurs when the tissue has lost most of its water and only after slow dehydration, suggesting that a minimum period of time is required for the enzyme activity induction. Fluorescence analysis showed that Z, synthesised during tissue dehydration in the absence of light, prevents photoinhibition when rewatered tissues are illuminated. This is probably due to Z implication in both non-photochemical quenching and/or antioxidative responses.
Trees-structure and Function | 2003
José Ignacio García-Plazaola; José Miguel Olano; Antonio Hernández; J. M. Becerril
The photoprotective responses to an abrupt period of exceptional cold weather were studied in several Mediterranean evergreen species with different ecological requirements. The same pattern of response was observed in most of the species with little change in hydrophilic antioxidants (ascorbate and glutathione) and the carotenoid pool, an increase in the content of α -tocopherol, and a night retention of de-epoxidised xanthophylls (antheraxanthin and zeaxanthin). The accumulation of these xanthophylls correlated with a sustained decrease in maximal photochemical efficiency (Fv/Fm). This reduction in the rate of electron transport would reduce the production of superoxide in photosystem I, as well as the subsequent hydrogen peroxide and hydroxyl radical. Thereby if any transitory photooxidative stress is produced under these conditions it should be due mainly to the formation of singlet oxygen by triplet excited chlorophyll within the antenna. Since α-tocopherol is the main scavenger of singlet oxygen and lipid peroxy radicals, the large increase of this antioxidant within the species could be enough to compensate for the higher degree of photooxidative stress, playing an essential role in the survival of vegetation during the incidence of exceptional cold fronts in the Mediterranean region.
Planta | 2011
Beatriz Fernández-Marín; Fátima Míguez; J. M. Becerril; José Ignacio García-Plazaola
The development of desiccation tolerance by vegetative tissues was an important step in the plants’ conquest of land. To counteract the oxidative stress generated under these conditions the xanthophyll cycle plays a key role. Recent reports have shown that desiccation itself induces de-epoxidation of xanthophyll cycle pigments, even in darkness. The aim of the present work was to study whether this trait is a common response of all desiccation-tolerant plants. The xanthophyll cycle activity and the maximal photochemical efficiency of PS II (Fv/Fm) as well as β-carotene and α-tocopherol contents were compared during slow and rapid desiccation and subsequent rehydration in six species pairs (with one desiccation-sensitive and one desiccation-tolerant species each) belonging to different taxa. Xanthophyll cycle pigments were de-epoxidised in darkness concomitantly with a decrease in Fv/Fm during slow dehydration in all the desiccation-tolerant species and in most of the desiccation-sensitive ones. De-epoxidation was reverted in darkness by re-watering in parallel with the recovery of the initial Fv/Fm. The stability of the β-carotene pool confirmed that its hydroxylation did not contribute to zeaxanthin formation. The α-tocopherol content of most of the species did not change during dehydration. Because it is a common mechanism present in all the desiccation-tolerant taxa and in some desiccation-sensitive species, and considering its role in antioxidant processes and in excess energy dissipation, the induction of the de-epoxidation of xanthophyll cycle pigments upon dehydration in the dark could be understood as a desiccation tolerance-related response maintained from the ancestral clades in the initial steps of land occupation by plants.
Plant Biology | 2008
Raquel Esteban; M. S. Jiménez; Domingo Morales; E. T. Jiménez; Koldobika Hormaetxe; J. M. Becerril; B. Osmond; José Ignacio García-Plazaola
Short- and long-term responses of the violaxanthin (V) and lutein epoxide (Lx) cycles were studied in two species of Lauraceae: sweet bay laurel (Laurus nobilis L.) and avocado (Persea americana L.). The Lx content exceeded the V content in shade leaves of both species. Both Lx and V were de-epoxidised on illumination, but only V was fully restored by epoxidation in low light. Violaxanthin was preferentially de-epoxidised in low light in L. nobilis. This suggests that Lx accumulates with leaf ageing, partly because its conversion to lutein is limited in shade. After exposure to strong light, shade leaves of avocado readjusted the total pools of alpha- and beta-xanthophyll cycles by de novo synthesis of antheraxanthin, zeaxanthin and lutein. This occurred in parallel with a sustained depression of F(v)/F(m). In Persea indica, a closely related but low Lx species, F(v)/F(m) recovered faster after a similar light treatment, suggesting the involvement of the Lx cycle in sustained energy dissipation. Furthermore, the seasonal correlation between non-reversible Lx and V photoconversions and pre-dawn F(v)/F(m) in sun leaves of sweet bay supported the conclusion that the Lx cycle is involved in a slowly reversible downregulation of photosynthesis analogous to the V cycle.
Plant and Soil | 1993
José Ignacio García-Plazaola; J. M. Becerril; C. Arrese-Igor; A. Hernandez; Carmen González-Murua; P. M. Aparicio-Tejo
The denitrifying ability of thirteen strains of Rhizobium meliloti was tested. Most of the strains were able to reduce nitrate to nitrous oxide or dinitrogen. However, they failed to use nitrate as electron acceptor for ATP generation or growth at low oxygen tensions. Under micro-aerobic conditions, free-living cells of R. meliloti 102-F-51 strain exhibited a constitutive nitrate reductase activity independent of the presence of nitrate. On the other hand, nitrite reductase activity was dependent not only on low levels of oxygen but also on the presence of a high nitrate concentration in the medium. Denitrification activity proceeded immediately once a threshold level of nitrite was accumulated in the medium or in cells incubated with 1mM nitrite. However, a lag period was required when cells were incubated with nitrate.
Plant and Soil | 1993
José Ignacio García-Plazaola; J. M. Becerril; C. Arrese-Igor; Carmen González-Murua; P. M. Aparicio-Tejo
The ability of Rhizobium meliloti cells to denitrify in soils under several conditions was tested. All the strains tested were able to remove large amounts of N-NO3- from soils. Both water filled pore space above 36% and temperatures above 20°C greatly increased nitrogen losses. However, even with optimal conditions for denitrification and the highest rhizobial populations found in agricultural soils, the contribution of Rhizobium to the total denitrification was virtually negligible as compared to other soil microorganisms.