J.M. Brennan
Brookhaven National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.M. Brennan.
Proceedings of the 2005 Particle Accelerator Conference | 2005
Vladimir N. Litvinenko; I. Ben-Zvi; D. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; Xiangyun Chang; R. Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. Mahler; G. McIntyre; W. Meng; T. Nehring; A. Nicoletti; B. Oerter; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith
We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1 - 1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.
Proceedings of the 2005 Particle Accelerator Conference | 2005
I. Ben-Zvi; D. Barton; D. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; Xiangyun Chang; R. Connolly; D. Gassner; J. Grimes; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; Vladimir N. Litvinenko; G. McIntyre; W. Meng; T. Nehring; A. Nicoletti; D. Pate; B. Oerter; J. Rank; T. Rao; T. Roser; T. Russo
Next generation light-sources, electron coolers, high-power FELs, Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL’s Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.
Particle Accelerator Conference; Vancouver, B.C., Canada; 20090504 through 20090508 | 2009
J.M. Brennan; M. Blaskiewicz; K. Mernick
Emittance growth due to Intra-Beam Scattering significantly reduces the heavy ion luminosity lifetime in RHIC. Stochastic cooling of the stored beam could improve things considerably by counteracting IBS and preventing particles from escaping the rf bucket [1]. High frequency bunched-beam stochastic cooling is especially challenging but observations of Schottky signals in the 4-8 GHz band indicate that conditions are favorable in RHIC [2]. We report here on measurements of the longitudinal beam transfer function carried out with a pickup kicker pair on loan from FNAL TEVATRON. Results imply that for ions a coasting beam description is applicable and we outline some general features of a viable momentum cooling system for RHIC.
Proceedings of the 2003 Particle Accelerator Conference | 2003
W. Fischer; M. Blaskiewicz; J.M. Brennan; P. Cameron; R. Connolly; C. Montag; S. Peggs; F. Pilat; V. Ptitsyn; S. Tepikian; D. Trbojevic
RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far.
ieee particle accelerator conference | 2007
I. Ben-Zvi; J. Alduino; D. Barton; D. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; Xiangyun Chang; A. Drees; A. Fedotov; W. Fischer; G. Ganetis; D. Gassner; J. Grimes; H. Hahn; Lee Hammons; A. Hershcovitch; H.C. Hseuh; D. Kayran; J. Kewisch; R. Lambiase; D. Lederle; Vladimir N. Litvinenko; C. Longo; W. W. MacKay; G. Mahler; G. Mclntyre; W. Meng
The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed calculations were made of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. The electron beam accelerator will be a superconducting Energy Recovery Linac (ERL). An intensive experimental R&D program engages the various elements of the accelerator, as described by 24 contributions to the 2007 PAC.
ieee particle accelerator conference | 2007
T. Satogata; L. Ahrens; M. Bai; J.M. Brennan; D. Bruno; J. Butler; A. Drees; A. Fedotov; W. Fischer; M. Harvey; T. Hayes; W. Jappe; R.C. Lee; W. W. MacKay; N. Malitsky; G. Marr; R. Michnoff; B. Oerter; E. Pozdeyev; T. Roser; F. Severino; K. Smith; S. Tepikian; N. Tsoupas
There is significant interest in RHIC heavy ion collisions at radics =5-50 GeV/u, motivated by a search for the QCD phase transition critical point. The lowest energies are well below the nominal RHIC gold injection radics = 19.6 GeV/u. There are several challenges that face RHIC operations in this regime, including longitudinal acceptance, magnet field quality, lattice control, and luminosity monitoring. We report on the status of work to address these challenges, including results from beam tests of low energy RHIC operations with protons and gold.
PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268) | 2001
L. Ahrens; J. Alessi; W. van Asselt; J. Benjamin; M. Blaskiewicz; J.M. Brennan; K.A. Brown; C. Carlson; J. Delong; C. Gardner; J.W. Glenn; T. Hayes; T. Roser; K.S. Smith; D. Steski; N. Tsoupas; K. Zeno; S.Y. Zhang
The recent successful commissioning and operation of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) requires the injection of gold ions of specified energy and intensity with longitudinal and transverse emittances small enough to meet the luminosity requirements of the collider. Ion beams with the desired characteristics are provided by a series of three accelerators, the Tandem, Booster and AGS. The current status and recent performance of these accelerators are reviewed in this paper.
Proceedings of the 2005 Particle Accelerator Conference | 2005
F. Pilat; L. Ahrens; M. Bai; D. Barton; J. Beebe-Wang; M. Blaskiewicz; J.M. Brennan; D. Bruno; P. Cameron; R. Connolly; J. DeLong; T. D'Ottavio; A. Drees; W. Fischer; G. Ganetis; C. Gardner; J. W. Glenn; P. Harvey; Thomas Hayes; H.C. Hseuh; H. Huang; P. Ingrassia; U. Iriso; R. Lee; Vladimir N. Litvinenko; Yun Luo; W. W. MacKay; G. Marr; A. Marusic; R. Michnoff
The 5thyear of RHIC operations, started in November 2004 and expected to last till June 2005, consists of a physics run with Cu-Cu collisions at 100 GeV/u followed by one with polarized protons (pp) at 100 GeV [1]. We will address here the overall performance of the RHIC complex used for the first time as a Cu-Cu collider, and compare it with previous operational experience with Au, PP and asymmetric d-Au collisions. We will also discuss operational improvements, such as a squeeze to 85cm in the high luminosity interaction regions from the design value of 1m, system improvements, machine performance and limitations, and address reliability and uptime issues.
Proceedings Particle Accelerator Conference | 1995
M. Blaskiewicz; L. Ahrens; E.J. Bleser; J.M. Brennan; C. Gardner; J. W. Glenn; R.K. Reece; T. Roser; M.J. Syphers; W. vanAsselt; S.Y. Zhang
In 1995 the AGS upgrade met its design goal of 60 TP (1 TP=10/sup 12/ protons) per pulse, made possible by significant improvements in the AGS Booster and AGS. We summarize these improvements and outline strategies for future upgrades.
ieee particle accelerator conference | 1989
J.M. Brennan; L.A. Ahrens; J. Alessi; J. Brodowski; J. Kats; W. van Asselt
A fast beam chopper has been built that can produce an arbitrary pulse program of the 200-MeV H/sup -/ beam for synchronous injection into moving RF buckets in the Alternating Gradient Synchrotron (AGS). The chopper will eliminate RF capture losses and can be used to tailor the initial distribution in longitudinal phase space by varying the pulse parameters, width and phase, on a bunch-by-bunch time scale during multiturn injection. The chopper also serves as a studies tool, because it can provide controllable beam intensity with fixed longitudinal emittance (or conversely) and/or missing bunches. It is an electrostatic deflection device with 15 pairs of plates located above and below the 35-keV H/sup -/ beam between the ion source and the RFQ (radio-frequency quadrupole) preinjector. The plates are spaced 26-mm apart in the beam direction and connected as a slow-wave structure by coaxial cables. They are driven to +or-760 V by DC-coupled pulse generators. Beam current rise and fall times are less than 10 ns.<<ETX>>