Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.M. Fernández-Sevilla is active.

Publication


Featured researches published by J.M. Fernández-Sevilla.


Applied Microbiology and Biotechnology | 2010

Biotechnological production of lutein and its applications

J.M. Fernández-Sevilla; F.G. Acién Fernández; E. Molina Grima

Lutein is an antioxidant that has gathered increasing attention due to its potential role in preventing or ameliorating age-related macular degeneration. Currently, it is produced from marigold oleoresin, but continuous reports of lutein-producing microalgae pose the question if those microorganisms can become an alternative source. Several microalgae have higher lutein contents than most marigold cultivars and have been shown to yield productivities hundreds of times higher than marigold crops on a per square meter basis. Microalgae and marigold are opposite alternatives in the use of resources such as land and labor and the prevalence of one or the other could change in the future as the lutein demand rises and if labor or land becomes more restricted or expensive in the producing countries. The potential of microalgae as a lutein source is analyzed and compared to marigold. It is suggested that, in the current state of the art, microalgae could compete with marigold even without counting on any of the improvements in microalgal technology that can be expected in the near future.


Phytochemistry | 2000

Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum

Diego López Alonso; El-Hassan Belarbi; J.M. Fernández-Sevilla; Juan Rodríguez-Ruiz; Emilio Molina Grima

The influence of culture age and nitrogen concentration on the distribution of fatty acids among the different acyl lipid classes has been studied in continuous cultures of the microalga Phaeodactylum tricornutum. The culture age was tested in the range of 1.15-7 days, controlled by adjusting the dilution rate of fresh medium supplied. The effect of nitrogen concentration was tested from saturating conditions to starvation by modifying nitrate concentration in the fresh medium. Culture age had almost no influence on the fatty acid content; 16:0, 16:3 and 20:5 increased moderately wherein the level of 16:1 decreased when the culture age decreased. Culture age had no effect on the total fatty acid content that remained around 11% of dry weight. Conversely, culture age had a greater impact on lipid classes, producing changes in amounts of triacylglycerols (TAG) which ranged between 43% and 69%, and galactolipids (GLs) that oscillated between 20% and 40%. In general, the content of polar lipids of the biomass decreased with culture age. The other factor assayed, nitrogen content, affected the fatty acid profile. Saturated and monounsaturated fatty acids accumulated when the nitrogen concentration was decreased. The experiments regarding the effect of nitrogen concentration on lipid species were carried out with cells of an average age of 3.5 days. A decrease of the nitrogen concentration caused the GL fraction to decrease from 21 to 12%. Conversely, both neutral lipids (NLs) and phospolipids (PLs) increased from about 73 to 79% and from 6 to 8%, respectively. In these experiments, TAG was the lipid class with the highest increase, from 69 to 75%.


Bioresource Technology | 2012

Evaluation of flocculants for the recovery of freshwater microalgae.

M.R. Granados; F.G. Acién; C. Gómez; J.M. Fernández-Sevilla; E. Molina Grima

The use flocculants on the recovery of freshwater microalgae is studied. Flocculants tested include metal salts, chitosan, and polyelectrolytes used in wastewater treatment processes. Influence of flocculant, but also the doses and biomass concentrations affecting biomass recovery as well as the concentration factor has been evaluated. Results showed that the use of metal salts or chitosan was not efficient, whereas polyelectrolytes allow the efficient recovery of biomass, at doses of 2-25 mg per gram of microalgae biomass. The required doses depend on the particular polyelectrolyte and the freshwater strain present; but cationic polyelectrolytes are generally recommended. The use of polyelectrolytes does not adversely affect water reuse in the production process. The concentration factors obtained are higher than 35 in most cases. Such high concentration factors allow a reduction in the equipment size necessary for biomass dewatering, thus improving the viability of using these microorganisms in biofuel or wastewater processes.


Journal of Agricultural and Food Chemistry | 2008

Recovery of Lutein from Microalgae Biomass: Development of a Process for Scenedesmus almeriensis Biomass

M. Carmen Cerón; Inmaculada Campos; Juan Sanchez; F.G. Acién; Emilio Molina; J.M. Fernández-Sevilla

In this work an optimized method for the extraction of lutein from microalgae biomass is presented. It has been developed using dry biomass of the lutein-rich microalga Scenedesmus almeriensis. The method comprises three steps, cell disruption, alkaline treatment, and solvent extraction, and renders a carotenoid extract rich in lutein. The results demonstrate that cell disruption is necessary and that the best option among the treatments tested with regard to industrial applications is the use of a bead mill with alumina in a 1:1 w/w proportion as disintegrating agent for 5 min. With regard to the alkaline treatment, the optimal conditions were obtained using 4% w/v KOH with a biomass concentration of 100 g/L for 5 min. Longer alkaline treatments or the use of higher KOH concentrations reduced the yield of the process. Finally, extraction with hexane is optimized. Using a 1:1 ratio hexane to sample volume, a total of eight extraction steps are necessary to recover 99% of lutein contained in the processed biomass. However, the optimal number of extraction steps is six, 95% of the lutein being recovered. In summary, the developed method allows the efficient recovery of lutein from microalgae biomass, it being a scaleable and industrially applicable method.


Biotechnology and Bioengineering | 2012

Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms

C.V. González-López; F.G. Acién Fernández; J.M. Fernández-Sevilla; J.F. Sánchez Fernández; E. Molina Grima

A new methodology to use efficiently flue gases as CO2 source in the production of photosynthetic microorganisms is proposed. The CO2 is absorbed in an aqueous phase that is then regenerated by microalgae. Carbonated solutions could absorb up to 80% of the CO2 from diluted gas reaching total inorganic carbon (TIC) concentrations up to 2.0 g/L. The pH of the solution was maintained at 8.0–10.0 by the bicarbonate/carbonate buffer, so it is compatible with biological regeneration. The absorption process was modeled and the kinetic parameters were determined. Anabaena sp. demonstrated to tolerate pH (8.0–10.0) and TIC (up to 2.0 g/L) conditions imposed by the absorption step. Experiments of regeneration of the liquid phase demonstrated the feasibility of the overall process, converting CO2 into organic matter. The developed process avoids heating to regenerate the liquid whereas maximizing the efficiency of CO2 use, which is relevant to achieve the commercial production of biofuels from microalgae. Biotechnol. Bioeng. 2012; 109:1637–1650.


Journal of Chromatography B | 2011

Development of a process for large-scale purification of C-phycocyanin from Synechocystis aquatilis using expanded bed adsorption chromatography

Amparo Ramos; F. Gabriel Acién; J.M. Fernández-Sevilla; Cynthia V. González; Ruperto Bermejo

In this paper a large and scaleable method for purification of C-phycocyanin (C-PC) from the cyanobacteria Synechocystis aquatilis has been developed. Phycobiliproteins are extracted from the cells by osmotic shock and separated by passing the centrifuged cell suspension through an expanded bed adsorption chromatography (EBAC) column using Streamline-DEAE as adsorbent. The eluted C-PC rich solution is finally purified by packed-bed chromatography using DEAE-cellulose. Optimal extraction is achieved using phosphate 0.05 M buffer pH 7.0 twice. The operation of EBAC is optimized on a small scale using a column of 15 mm internal diameter (I.D.). The optimal conditions are a sample load of 4.9 mg C-PC/mL adsorbent, an expanded bed volume twice the settled bed volume and a sample viscosity of 1.020 mP. The EBAC process is then scaled up by increasing the column I.D. (15, 25, 40, 60 and 90 mm) and the success of the scale-up process is verified by determining the protein breakthrough capacity and product recovery. The yield of the EBAC step is in the range of 90-93% for every column diameter. To obtain pure C-PC, conventional ion-exchange chromatography with DEAE-cellulose is utilized and a yield of 74% is obtained. The overall yield of the process, comprising all steps, is 69%. The purification steps are monitored using SDS-PAGE and the purity of recovered C-PC is confirmed by absorption and emission spectroscopy and RP-HPLC. Results show that EBAC method is a scalable technology that allows large quantities of C-PC to be obtained without product loss, maintaining a high protein recovery while reducing both processing cost and time.


Biotechnology and Bioengineering | 2010

The oxygen evolution methodology affects photosynthetic rate measurements of microalgae in well‐defined light regimes

Celeste Brindley; F.G. Acién; J.M. Fernández-Sevilla

Designing photobioreactors correctly is a must for the success of microalgal mass production. Optimal photobioreactor design requires a precise knowledge of photosynthesis dynamics in fluctuating light conditions and hence a method for the measurement of photosynthetic rates in specific light regimes. However, it is not uncommon in literature that experimental protocols used to obtain oxygen generation rates are described ambiguously and the reported rates of photosynthesis vary widely depending on the methodology. Additionally, quite a number of methods overlook certain aspects that can affect the estimated rates significantly, and can therefore affect photobioreactor design. We have developed a method based on oxygen evolution measurements that accurately determines photosynthetic rates under well‐defined light regimes. Our experimental protocol takes into account most of the issues that can affect the rates of oxygen generation, such as depletion of nutrients during the measurements and precision of the measurements. We have focused on the basic applications in photobioreactor design and used a dynamic model of photosynthesis to analyze our results and compare them with available published data. The results suggest that our oxygen evolution method is consistent. Biotechnol. Bioeng. 2010;106: 228–237.


Bioresource Technology | 2013

Medium recycling for Nannochloropsis gaditana cultures for aquaculture

C.V. González-López; M.C. Cerón-García; J.M. Fernández-Sevilla; A.M. González-Céspedes; J. Camacho-Rodríguez; E. Molina-Grima

Nannochloropsis gaditana is a good producer of proteins and valuable fatty acids for aquaculture. Recycling of culture medium is interesting for microalgae commercial production as it cuts costs and prevents environmental contamination. The recycled medium must be sterilized to prevent the buildup of unwanted metabolites and microorganisms. We tested several sterilization methods: filtration, ozonation, chlorination, addition of hydrogen peroxide and heating. Results showed that the most successful method is ozonation lowering the bacterial load to 1.910(3)CFUs/mL, which is 1000-fold and 10-fold lower than the supernatant obtained after harvesting and the initial filtered medium, respectively. Continuous cultures of N. gaditana were grown using this recirculated supernatant. A maximum biomass productivity of 0.8 g/L/d composed of ∼50% proteins and 40% lipids with more than 3%d.w. EPA was obtained making this biomass very interesting for aquaculture.


Bioresource Technology | 2013

A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture.

J. Camacho-Rodríguez; M.C. Cerón-García; C.V. González-López; J.M. Fernández-Sevilla; Antonio Contreras-Gómez; E. Molina-Grima

Nannochloropsis gaditana is a microalga with a high nutritional value and a protein and polyunsaturated fatty acid (PUFA) content that makes it interesting as a feed in aquaculture. To maximize its productivity and nutritional value in large-scale culture, a well-known commercial medium was optimized to the most favorable nutrient level using commercial fertilizers. Optimal growth conditions were obtained in the alternative fertilizer-based medium at a nitrogen concentration of 11.3 mM, a phosphorus concentration of 0.16 mM, and a micronutrient concentration of 30 μL L(-1). This alternative medium allowed to obtain a biomass concentration similar to that achieved when using the commercial formula but with a reduction in Cu, Fe, and Mo content of 71%, 89%, and 99%, respectively. A maximum biomass productivity of 0.51 g L(-1) d(-1) was obtained. The eicosapentaenoic acid and protein contents of the biomass were 2.84% and 44% of dry weight, respectively.


Bioresource Technology | 2013

Mixotrophic growth of Phaeodactylum tricornutum on fructose and glycerol in fed-batch and semi-continuous modes.

M.C. Cerón-García; J.M. Fernández-Sevilla; A. Sánchez-Mirón; F. García-Camacho; Antonio Contreras-Gómez; E. Molina-Grima

Mixotrophic cultures of Phaeodactylum tricornutum were carried out in bubble columns using fructose and glycerol in indoor fed-batch and semi-continuous modes. In the fed-batch cultures, different nutrient-addition strategies, combined with stepwise increments in the light intensity, were assayed. It was found that glycerol promoted significantly higher biomass productivity than fructose. A glycerol-induced photoinhibition that arrested the growth of P. tricornutun was also observed. As this was considered a limitation as regards transferring the fed-batch mode to outdoor conditions, this information was used to culture P. tricornutum in semi-continuous mode. Similar glycerol-induced photoinhibition was not observed in these cultures, even at highest dilution rates. Although the highest biomass (1.5 g L(-1) d(-1)) and EPA (40 mg L(-1) d(-1)) productivities found in the semi-continuous cultures were lower than those obtained photoautotrophically in outdoor photobioreactors, the findings showed that semi-continuous mode was an excellent candidate for transferring mixotrophic culture to an outdoor setting.

Collaboration


Dive into the J.M. Fernández-Sevilla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F.G. Acién

University of Almería

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Gómez

University of Almería

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge