Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. M. Moore is active.

Publication


Featured researches published by J. M. Moore.


Science | 1996

Galileo's First Images of Jupiter and the Galilean Satellites

M. J. S. Belton; James W. Head; A. P. Ingersoll; Ronald Greeley; Alfred S. McEwen; Kenneth P. Klaasen; David A. Senske; Robert T. Pappalardo; G. C. Collins; Ashwin R. Vasavada; Robert John Sullivan; D. P. Simonelli; P. E. Geissler; Michael H. Carr; Merton E. Davies; J. Veverka; Peter J. Gierasch; Donald J. Banfield; M. Bell; Clark R. Chapman; Clifford D. Anger; Richard Greenberg; G. Neukum; Carl B. Pilcher; R. F. Beebe; Joseph A. Burns; Fraser P. Fanale; W. Ip; Torrence V. Johnson; David R. Morrison

The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiters Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on Io. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.


Science | 2014

Ancient Aqueous Environments at Endeavour Crater, Mars

Raymond E. Arvidson; Steven W. Squyres; James F. Bell; Jeffrey G. Catalano; B. C. Clark; Larry S. Crumpler; P. A. de Souza; Alberto G. Fairén; William H. Farrand; V. K. Fox; R. Gellert; Anupam Ghosh; M. P. Golombek; John P. Grotzinger; Edward A. Guinness; K. E. Herkenhoff; Bradley L. Jolliff; Andrew H. Knoll; R. Li; Scott M. McLennan; D. W. Ming; D. W. Mittlefehldt; J. M. Moore; Richard V. Morris; Scott L. Murchie; T. J. Parker; Gale Paulsen; J. W. Rice; Steven W. Ruff; M. D. Smith

Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.


Geology | 2006

Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars

John P. Grotzinger; James F. Bell; K. E. Herkenhoff; James Richard Johnson; Andrew H. Knoll; Elaina McCartney; Scott M. McLennan; Joannah M. Metz; J. M. Moore; S. W. Squyres; R. Sullivan; O. Ahronson; Raymond E. Arvidson; B. L. Joliff; M. P. Golombek; Kevin W. Lewis; T. J. Parker; Jason M. Soderblom

New observations at Erebus crater (Olympia outcrop) by the Mars Exploration Rover Opportunity between sols 671 and 735 (a sol is a martian day) indicate that a diverse suite of primary and penecontemporaneous sedimentary structures is preserved in sulfate-rich bedrock. Centimeter-scale trough (festoon) cross-lamination is abundant, and is better expressed and thicker than previously described examples. Postdepositional shrinkage cracks in the same outcrop are interpreted to have formed in response to desiccation. Considered collectively, this suite of sedimentary structures provides strong support for the involvement of liquid water during accumulation of sedimentary rocks at Meridiani Planum.


Space Science Reviews | 2008

New Horizons: Anticipated Scientific Investigations at the Pluto System

Leslie A. Young; S. Alan Stern; Harold A. Weaver; Fran Bagenal; Richard P. Binzel; Bonnie J. Buratti; Andrew F. Cheng; Dale P. Cruikshank; G. Randall Gladstone; William M. Grundy; David P. Hinson; Mihaly Horanyi; Donald E. Jennings; Ivan R. Linscott; D. J. McComas; William B. McKinnon; Ralph L. McNutt; J. M. Moore; Scott L. Murchie; Catherine B. Olkin; Carolyn C. Porco; Harold J. Reitsema; D. C. Reuter; John R. Spencer; David C. Slater; Darrell F. Strobel; Michael E. Summers; G. Leonard Tyler

The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth).


Archive | 2010

Tectonics of the Outer Planet Satellites

William B. McKinnon; G. C. Collins; J. M. Moore; Francis Nimmo; Robert T. Pappalardo; Louise M. Prockter; Paul M. Schenk

Tectonic features on the satellites of the outer planets range from the familiar, such as clearly recognizable graben on many satellites, to the bizarre, such as the ubiquitous double ridges on Europa, the twisting sets of ridges on Triton, or the isolated giant mountains rising from Ios surface. All of the large and middle-sized outer planet satellites except Io are dominated by water ice near their surfaces. Though ice is a brittle material at the cold temperatures found in the outer solar system, the amount of energy it takes to bring it close to its melting point is lower than for a rocky body. Therefore, some unique features of icy satellite tectonics may be influenced by a near-surface ductile layer beneath the brittle surface material, and several of the icy satellites may possess subsurface oceans. Sources of stress to drive tectonism are commonly dominated by the tides that deform these satellites as they orbit their primary giant planets. On several satellites, the observed tectonic features may be the result of changes in their tidal figures, or motions of their solid surfaces with respect to their tidal figures. Other driving mechanisms for tectonics include volume changes due to ice or water phase changes in the interior, thermoelastic stress, deformation of the surface above rising diapirs of warm ice, and motion of subsurface material toward large impact basins as they fill in and relax. Most satellites exhibit evidence for extensional deformation, and some exhibit strike-slip faulting, whereas contractional tectonism appears to be rare. Io s surface is unique, exhibiting huge isolated mountains that may be blocks of crust tilting and foundering into the rapidly emptying interior as the surface is constantly buried by deposits from hyperactive volcanoes. Of the satellites, diminutive Enceladus is spectacularly active; its south polar terrain is a site of young tectonism, copious heat flow, and tall plumes venting into space. Europas surface is pervasively tectonized, covered with a diverse array of exotic and incompletely understood tectonic features. The paucity of impact craters on Europa suggests that its tectonic activity is ongoing. Geysers on Triton show that some degree of current activity, while tectonic features that cross sparsely cratered terrain indicate that it may also be tectonically active. Ganymede and Miranda both exhibit ancient terrains that have been pulled apart by normal faulting. On Ganymede these faults form a global network, while they are confined to regional provinces on Miranda. Ariel, Dione, Tethys, Rhea, and Titania all have systems of normal faults cutting across their surfaces, though the rifting is less pronounced than it is on Ganymede and Miranda. Iapetus exhibits a giant equatorial ridge that has defied simple explanation. The rest of the large and middle-sized satellites show very little evidence for tectonic features on their surfaces, though the exploration of Titans surface has just begun.


Nature | 2016

Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour.

William B. McKinnon; Francis Nimmo; Teresa Wong; Paul M. Schenk; Oliver L. White; James H. Roberts; J. M. Moore; John R. Spencer; Alan D. Howard; Orkan M. Umurhan; S. A. Stern; H.A. Weaver; Cathy Olkin; Leslie A. Young; K. E. Smith; Imaging Theme Team

The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Plutos vigorous geological activity. Composed of molecular nitrogen, methane, and carbon monoxide ices, but dominated by nitrogen ice, this layer is organized into cells or polygons, typically about 10 to 40 kilometres across, that resemble the surface manifestation of solid-state convection. Here we report, on the basis of available rheological measurements, that solid layers of nitrogen ice with a thickness in excess of about one kilometre should undergo convection for estimated present-day heat-flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-kilometre-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of nitrogen-ice viscosity implies that the ice layer convects in the so-called sluggish lid regime, a unique convective mode not previously definitively observed in the Solar System. Average surface horizontal velocities of a few centimetres a year imply surface transport or renewal times of about 500,000 years, well under the ten-million-year upper-limit crater retention age for Sputnik Planum. Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help to explain the high albedos shown by some of these bodies.


Astrobiology | 2013

Science potential from a Europa Lander

Robert T. Pappalardo; Steven D. Vance; Fran Bagenal; Bruce G. Bills; Diana L. Blaney; Donald D. Blankenship; William B. Brinckerhoff; J. E. P. Connerney; Kevin P. Hand; Tori M. Hoehler; J. S. Leisner; W. S. Kurth; M.A. McGrath; Michael T. Mellon; J. M. Moore; G. W. Patterson; Louise M. Prockter; D.A. Senske; B. E. Schmidt; Everett L. Shock; D.E. Smith; K.M. Soderlund

The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europas potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europas non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellites ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.


Science | 2016

The Small Satellites of Pluto as Observed by New Horizons

H.A. Weaver; Marc William Buie; Bonnie J. Buratti; William M. Grundy; Tod R. Lauer; Catherine B. Olkin; Alex H. Parker; Simon B. Porter; Mark R. Showalter; John R. Spencer; S. A. Stern; Anne Jacqueline Verbiscer; William B. McKinnon; J. M. Moore; Stuart J. Robbins; Paul M. Schenk; Kelsi N. Singer; Olivier S. Barnouin; Andrew F. Cheng; Carolyn M. Ernst; Carey Michael Lisse; D. E. Jennings; Allen W. Lunsford; D. C. Reuter; Douglas P. Hamilton; David E. Kaufmann; Kimberly Ennico; Leslie A. Young; Ross A. Beyer; Richard P. Binzel

New Horizons unveils the Pluto system In July 2015, the New Horizons spacecraft flew through the Pluto system at high speed, humanitys first close look at this enigmatic system on the outskirts of our solar system. In a series of papers, the New Horizons team present their analysis of the encounter data downloaded so far: Moore et al. present the complex surface features and geology of Pluto and its large moon Charon, including evidence of tectonics, glacial flow, and possible cryovolcanoes. Grundy et al. analyzed the colors and chemical compositions of their surfaces, with ices of H2O, CH4, CO, N2, and NH3 and a reddish material which may be tholins. Gladstone et al. investigated the atmosphere of Pluto, which is colder and more compact than expected and hosts numerous extensive layers of haze. Weaver et al. examined the small moons Styx, Nix, Kerberos, and Hydra, which are irregularly shaped, fast-rotating, and have bright surfaces. Bagenal et al. report how Pluto modifies its space environment, including interactions with the solar wind and a lack of dust in the system. Together, these findings massively increase our understanding of the bodies in the outer solar system. They will underpin the analysis of New Horizons data, which will continue for years to come. Science, this issue pp. 1284, 10.1126/science.aad9189, 10.1126/science.aad8866, 10.1126/science.aae0030, & 10.1126/science.aad9045 Pluto’s rapidly rotating small moons have bright icy surfaces with impact craters. INTRODUCTION The Pluto system is surprisingly complex, comprising six objects that orbit their common center of mass in approximately a single plane and in nearly circular orbits. When the New Horizons mission was selected for flight by NASA in 2001, only the two largest objects were known: the binary dwarf planets Pluto and Charon. Two much smaller moons, Nix and Hydra, were discovered in May 2005, just 8 months before the launch of the New Horizons spacecraft, and two even smaller moons, Kerberos and Styx, were discovered in 2011 and 2012, respectively. The entire Pluto system was likely produced in the aftermath of a giant impact between two Pluto-sized bodies approximately 4 to 4.5 billion years ago, with the small moons forming within the resulting debris disk. But many details remain unconfirmed, and the New Horizons results on Pluto’s small moons help to elucidate the conditions under which the Pluto system formed and evolved. RATIONALE Pluto’s small moons are difficult to observe from Earth-based facilities, with only the most basic visible and near-infrared photometric measurements possible to date. The New Horizons flyby enabled a whole new category of measurements of Pluto’s small moons. The Long Range Reconnaissance Imager (LORRI) provided high–spatial resolution panchromatic imaging, with thousands of pixels across the surfaces of Nix and Hydra and the first resolved images of Kerberos and Styx. In addition, LORRI was used to conduct systematic monitoring of the brightness of all four small moons over several months, from which the detailed rotational properties could be deduced. The Multispectral Visible Imaging Camera (MVIC) provided resolved color measurements of the surfaces of Nix and Hydra. The Linear Etalon Imaging Spectral Array (LEISA) captured near-infrared spectra (in the wavelength range 1.25 to 2.5 μm) of all the small moons for compositional studies, but those data have not yet been sent to Earth. RESULTS All four of Pluto’s small moons are highly elongated objects with surprisingly high surface reflectances (albedos) suggestive of a water-ice surface composition. Kerberos appears to have a double-lobed shape, possibly formed by the merger of two smaller bodies. Crater counts for Nix and Hydra imply surface ages of at least 4 billion years. Nix and Hydra have mostly neutral (i.e., gray) colors, but an apparent crater on Nix’s surface is redder than the rest of the surface; this finding suggests either that the impacting body had a different composition or that material with a different composition was excavated from below Nix’s surface. All four small moons have rotational periods much shorter than their orbital periods, and their rotational poles are clustered nearly orthogonal to the direction of the common rotational poles of Pluto and Charon. CONCLUSION Pluto’s small moons exhibit rapid rotation and large rotational obliquities, indicating that tidal despinning has not played the dominant role in their rotational evolution. Collisional processes are implicated in determining the shapes of the small moons, but collisional evolution was probably limited to the first several hundred million years after the system’s formation. The bright surfaces of Pluto’s small moons suggest that if the Pluto-Charon binary was produced during a giant collision, the two precursor bodies were at least partially differentiated with icy surface layers. Pluto’s family of satellites. NASA’s New Horizons mission has resolved Pluto’s four small moons, shown in order of their orbital distance from Pluto (from left to right). Nix and Hydra have comparable sizes (with equivalent spherical diameters of ~40 km) and are much larger than Styx and Kerberos (both of which have equivalent spherical diameters of ~10 km). All four of these moons are highly elongated and are dwarfed in size by Charon, which is nearly spherical with a diameter of 1210 km. The scale bars apply to all images. The New Horizons mission has provided resolved measurements of Pluto’s moons Styx, Nix, Kerberos, and Hydra. All four are small, with equivalent spherical diameters of ~40 kilometers for Nix and Hydra and ~10 kilometers for Styx and Kerberos. They are also highly elongated, with maximum to minimum axis ratios of ~2. All four moons have high albedos (~50 to 90%) suggestive of a water-ice surface composition. Crater densities on Nix and Hydra imply surface ages of at least 4 billion years. The small moons rotate much faster than synchronous, with rotational poles clustered nearly orthogonal to the common pole directions of Pluto and Charon. These results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary.


Journal of Geophysical Research | 1995

The Galileo Imaging Team plan for observing the satellites of Jupiter

Michael H. Carr; M. J. S. Belton; Kelly C. Bender; H. H. Breneman; Ronald Greeley; James W. Head; Kenneth P. Klaasen; Alfred S. McEwen; J. M. Moore; Scott L. Murchie; Robert T. Pappalardo; Joel Plutchak; R. Sullivan; G. Thornhill; J. Veverka

The Galileo spacecraft carries a 1500-nm focal length camera with a 800 × 800 CCD detector that will provide images with a spatial resolution of 10 μrad/pixel. The spacecraft will fly by Io at the time of Jupiter Orbit Insertion (JOI) and, subsequently, while in Jupiters orbit, will have a total of 10 close passes by Europa, Ganymede, and Callisto. These close passes, together with more distant encounters, will be used by the imaging experiment primarily to obtain high-resolution coverage of selected targets, to fill gaps left in the Voyager coverage, to extend global color coverage of each satellite, and to follow changes in the volcanic activity of Io. The roughly 390 Mbit allocated for imaging during the tour will be distributed among several hundred frames compressed by factors that range from 1 to possibly as high as 50. After obtaining high-resolution samples during the initial Io encounter at JOI, roughly 10% of imaging resources are devoted to near-terminator mapping of Ios topography at 2- to 10-km resolution, monitoring color and albedo changes of the Ionian surface, and monitoring plume activity. Observations of Europa range in resolution from several kilometers per pixel to 10 m/pixel. The objectives of Europa are (1) to determine the nature, origin, and age of the tectonic features, (2) to determine the nature, rates, and sequence of resurfacing events, (3) to assess the satellites cratering history, and (4) to map variations in spectral and photometric properties. Europa was poorly imaged by Voyager, so the plan includes a mix of high- and low-resolution sequences to provide context. The imaging objectives at Ganymede are (1) to characterize any volcanism, (2) to determine the nature and timing of any tectonic activity, (3) to determine the history of formation and degradation of impact craters, and (4) to determine the nature of the surface materials. Because Ganymede was well imaged by Voyager, most of the resources at Ganymede are devoted to high-resolution observations. The Callisto observations will be directed mostly toward (1) filling Voyager gaps, (2) acquiring high-resolution samples of typical cratered terrain and components of the Valhalla and Asgaard basins, (3) acquiring global color, and (4) determining the photometric properties of the surface. A small number of frames will be used to better characterize the small inner satellites of Jupiter, Thebe, Amalthea, Metis, and Adrastea.


Nature | 2016

The formation of Charon’s red poles from seasonally cold-trapped volatiles

William M. Grundy; Dale P. Cruikshank; G. R. Gladstone; Carly Howett; Tod R. Lauer; John R. Spencer; Michael E. Summers; Marc William Buie; A.M. Earle; Kimberly Ennico; J. Wm. Parker; Simon B. Porter; Kelsi N. Singer; S. A. Stern; Anne Jacqueline Verbiscer; Ross A. Beyer; Richard P. Binzel; Bonnie J. Buratti; Jason C. Cook; C.M. Dalle Ore; Cathy Olkin; Alex H. Parker; S. Protopapa; Eric Quirico; Kurt D. Retherford; Stuart J. Robbins; B. Schmitt; J. A. Stansberry; Orkan M. Umurhan; H.A. Weaver

A unique feature of Pluto’s large satellite Charon is its dark red northern polar cap. Similar colours on Pluto’s surface have been attributed to tholin-like organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location on Charon implicates the temperature extremes that result from Charon’s high obliquity and long seasons in the production of this material. The escape of Pluto’s atmosphere provides a potential feedstock for a complex chemistry. Gas from Pluto that is transiently cold-trapped and processed at Charon’s winter pole was proposed as an explanation for the dark coloration on the basis of an image of Charon’s northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase that show the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon and the supply and temporary cold-trapping of material escaping from Pluto, as well as the photolytic processing of this material into more complex and less volatile molecules while cold-trapped. The model results are consistent with the proposed mechanism for producing the observed colour pattern on Charon.

Collaboration


Dive into the J. M. Moore's collaboration.

Top Co-Authors

Avatar

Ronald Greeley

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Robert T. Pappalardo

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clark R. Chapman

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Paul M. Schenk

Lunar and Planetary Institute

View shared research outputs
Top Co-Authors

Avatar

S. A. Stern

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge