Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Martin Bollinger is active.

Publication


Featured researches published by J. Martin Bollinger.


Biochemistry | 2012

Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases

Ning Li; Wei-chen Chang; Douglas M. Warui; Squire J. Booker; Carsten Krebs; J. Martin Bollinger

Cyanobacterial aldehyde decarbonylases (ADs) catalyze the conversion of C(n) fatty aldehydes to formate (HCO(2)(-)) and the corresponding C(n-1) alk(a/e)nes. Previous studies of the Nostoc punctiforme (Np) AD produced in Escherichia coli (Ec) showed that this apparently hydrolytic reaction is actually a cryptically redox oxygenation process, in which one O-atom is incorporated from O(2) into formate and a protein-based reducing system (NADPH, ferredoxin, and ferredoxin reductase; N/F/FR) provides all four electrons needed for the complete reduction of O(2). Two subsequent publications by Marsh and co-workers [ Das, et al. ( 2011 ) Angew. Chem. Int. Ed. 50 , 7148 - 7152 ; Eser, et al. ( 2011 ) Biochemistry 50 , 10743 - 10750 ] reported that their Ec-expressed Np and Prochlorococcus marinus (Pm) AD preparations transform aldehydes to the same products more rapidly by an O(2)-independent, truly hydrolytic process, which they suggested proceeded by transient substrate reduction with obligatory participation by the reducing system (they used a chemical system, NADH and phenazine methosulfate; N/PMS). To resolve this discrepancy, we re-examined our preparations of both AD orthologues by a combination of (i) activity assays in the presence and absence of O(2) and (ii) (18)O(2) and H(2)(18)O isotope-tracer experiments with direct mass-spectrometric detection of the HCO(2)(-) product. For multiple combinations of the AD orthologue (Np and Pm), reducing system (protein-based and chemical), and substrate (n-heptanal and n-octadecanal), our preparations strictly require O(2) for activity and do not support detectable hydrolytic formate production, despite having catalytic activities similar to or greater than those reported by Marsh and co-workers. Our results, especially of the (18)O-tracer experiments, suggest that the activity observed by Marsh and co-workers could have arisen from contaminating O(2) in their assays. The definitive reaffirmation of the oxygenative nature of the reaction implies that the enzyme, initially designated as aldehyde decarbonylase when the C1-derived coproduct was thought to be carbon monoxide rather than formate, should be redesignated as aldehyde-deformylating oxygenase (ADO).


Journal of the American Chemical Society | 2011

Conversion of Fatty Aldehydes to Alka(e)nes and Formate by a Cyanobacterial Aldehyde Decarbonylase: Cryptic Redox by an Unusual Dimetal Oxygenase

Ning Li; Hanne Nørgaard; Douglas M. Warui; Squire J. Booker; Carsten Krebs; J. Martin Bollinger

Cyanobacterial aldehyde decarbonylase (AD) catalyzes conversion of fatty aldehydes (R-CHO) to alka(e)nes (R-H) and formate. Curiously, although this reaction appears to be redox-neutral and formally hydrolytic, AD has a ferritin-like protein architecture and a carboxylate-bridged dimetal cofactor that are both structurally similar to those found in di-iron oxidases and oxygenases. In addition, the in vitro activity of the AD from Nostoc punctiforme (Np) was shown to require a reducing system similar to the systems employed by these O(2)-utilizing di-iron enzymes. Here, we resolve this conundrum by showing that aldehyde cleavage by the Np AD also requires dioxygen and results in incorporation of (18)O from (18)O(2) into the formate product. AD thus oxygenates, without oxidizing, its substrate. We posit that (i) O(2) adds to the reduced cofactor to generate a metal-bound peroxide nucleophile that attacks the substrate carbonyl and initiates a radical scission of the C1-C2 bond, and (ii) the reducing system delivers two electrons during aldehyde cleavage, ensuring a redox-neutral outcome, and two additional electrons to return an oxidized form of the cofactor back to the reduced, O(2)-reactive form.


Current Opinion in Structural Biology | 2010

Substrate activation by iron superoxo intermediates

Wilfred A. van der Donk; Carsten Krebs; J. Martin Bollinger

A growing number of non-heme-iron oxygenases and oxidases catalyze reactions for which the well-established mechanistic paradigm involving a single C-H-bond-cleaving intermediate of the Fe(IV)-oxo (ferryl) type [1(•)] is insufficient to explain the chemistry. It is becoming clear that, in several of these cases, Fe(III)-superoxide complexes formed by simple addition of O(2) to the reduced [Fe(II)] cofactor initiate substrate oxidation by abstracting hydrogen [2,3(•)]. This substrate-oxidizing entry route into high-valent-iron intermediates makes possible an array of complex and elegant oxidation reactions without the consumption of valuable reducing equivalents. Examples of this novel mechanistic strategy are discussed with the goal of bringing forth unifying principles.


Science | 2014

Mechanism of the C5 stereoinversion reaction in the biosynthesis of carbapenem antibiotics

Wei-chen Chang; Yisong Guo; Chen Wang; Susan E. Butch; Amy C. Rosenzweig; Amie K. Boal; Carsten Krebs; J. Martin Bollinger

Carbapenems Through the Looking Glass The carbapenem class of antibiotics is a critical weapon in the ongoing fight against drug-resistant bacteria. Microbial biosynthesis of these compounds, which contain a strained β-lactam ring motif, proceeds via a precursor that has the wrong configuration at one of the ring carbons. Chang et al. (p. 1140) combined x-ray crystallography with multiple spectroscopic probes to map out the mechanism by which the CarC enzyme inverts the precursor configuration to its mirror image. Crystallography and spectroscopy detail a key mechanistic step in the microbial biosynthesis of an important antibiotic class. The bicyclic β-lactam/2-pyrrolidine precursor to all carbapenem antibiotics is biosynthesized by attachment of a carboxymethylene unit to C5 of l-proline followed by β-lactam ring closure. Carbapenem synthase (CarC), an Fe(II) and 2-(oxo)glutarate (Fe/2OG)–dependent oxygenase, then inverts the C5 configuration. Here we report the structure of CarC in complex with its substrate and biophysical dissection of its reaction to reveal the stereoinversion mechanism. An Fe(IV)-oxo intermediate abstracts the hydrogen (H•) from C5, and tyrosine 165, a residue not visualized in the published structures of CarC lacking bound substrate, donates H• to the opposite face of the resultant radical. The reaction oxidizes the Fe(II) cofactor to Fe(III), limiting wild-type CarC to one turnover, but substitution of the H•-donating tyrosine disables stereoinversion and confers to CarC the capacity for catalytic substrate oxidation.


Journal of the American Chemical Society | 2016

Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of Aspergillus nidulans Isopenicillin N Synthase.

Esta Y. Tamanaha; Bo Zhang; Yisong Guo; Wei-chen Chang; Eric W. Barr; Gang Xing; Jennifer St. Clair; Shengfa Ye; Frank Neese; J. Martin Bollinger; Carsten Krebs

The enzyme isopenicillin N synthase (IPNS) installs the β-lactam and thiazolidine rings of the penicillin core into the linear tripeptide l-δ-aminoadipoyl-l-Cys-d-Val (ACV) on the pathways to a number of important antibacterial drugs. A classic set of enzymological and crystallographic studies by Baldwin and co-workers established that this overall four-electron oxidation occurs by a sequence of two oxidative cyclizations, with the β-lactam ring being installed first and the thiazolidine ring second. Each phase requires cleavage of an aliphatic C-H bond of the substrate: the pro-S-CCys,β-H bond for closure of the β-lactam ring, and the CVal,β-H bond for installation of the thiazolidine ring. IPNS uses a mononuclear non-heme-iron(II) cofactor and dioxygen as cosubstrate to cleave these C-H bonds and direct the ring closures. Despite the intense scrutiny to which the enzyme has been subjected, the identities of the oxidized iron intermediates that cleave the C-H bonds have been addressed only computationally; no experimental insight into their geometric or electronic structures has been reported. In this work, we have employed a combination of transient-state-kinetic and spectroscopic methods, together with the specifically deuterium-labeled substrates, A[d2-C]V and AC[d8-V], to identify both C-H-cleaving intermediates. The results show that they are high-spin Fe(III)-superoxo and high-spin Fe(IV)-oxo complexes, respectively, in agreement with published mechanistic proposals derived computationally from Baldwins founding work.


Journal of the American Chemical Society | 2015

Rapid Reduction of the Diferric-Peroxyhemiacetal Intermediate in Aldehyde-Deformylating Oxygenase by a Cyanobacterial Ferredoxin: Evidence for a Free-Radical Mechanism

Lauren J. Rajakovich; Hanne Nørgaard; Douglas M. Warui; Wei Chen Chang; Ning Li; Squire J. Booker; Carsten Krebs; J. Martin Bollinger; Maria-Eirini Pandelia

Aldehyde-deformylating oxygenase (ADO) is a ferritin-like nonheme-diiron enzyme that catalyzes the last step in a pathway through which fatty acids are converted into hydrocarbons in cyanobacteria. ADO catalyzes conversion of a fatty aldehyde to the corresponding alk(a/e)ne and formate, consuming four electrons and one molecule of O2 per turnover and incorporating one atom from O2 into the formate coproduct. The source of the reducing equivalents in vivo has not been definitively established, but a cyanobacterial [2Fe-2S] ferredoxin (PetF), reduced by ferredoxin-NADP(+) reductase (FNR) using NADPH, has been implicated. We show that both the diferric form of Nostoc punctiforme ADO and its (putative) diferric-peroxyhemiacetal intermediate are reduced much more rapidly by Synechocystis sp. PCC6803 PetF than by the previously employed chemical reductant, 1-methoxy-5-methylphenazinium methyl sulfate. The yield of formate and alkane per reduced PetF approaches its theoretical upper limit when reduction of the intermediate is carried out in the presence of FNR. Reduction of the intermediate by either system leads to accumulation of a substrate-derived peroxyl radical as a result of off-pathway trapping of the C2-alkyl radical intermediate by excess O2, which consequently diminishes the yield of the hydrocarbon product. A sulfinyl radical located on residue Cys71 also accumulates with short-chain aldehydes. The detection of these radicals under turnover conditions provides the most direct evidence to date for a free-radical mechanism. Additionally, our results expose an inefficiency of the enzyme in processing its radical intermediate, presenting a target for optimization of bioprocesses exploiting this hydrocarbon-production pathway.


Biochemistry | 2015

Efficient delivery of long-chain fatty aldehydes from the Nostoc punctiforme acyl-acyl carrier protein reductase to its cognate aldehyde-deformylating oxygenase.

Douglas M. Warui; Maria-Eirini Pandelia; Lauren J. Rajakovich; Carsten Krebs; J. Martin Bollinger; Squire J. Booker

A two-step pathway consisting of an acyl-acyl carrier protein (ACP) reductase (AAR) and an aldehyde-deformylating oxygenase (ADO) allows various cyanobacteria to convert long-chain fatty acids into hydrocarbons. AAR catalyzes the two-electron, NADPH-dependent reduction of a fatty acid attached to ACP via a thioester linkage to the corresponding fatty aldehyde, while ADO transforms the fatty aldehyde to a Cn-1 hydrocarbon and C1-derived formate. Considering that heptadec(a/e)ne is the most prevalent hydrocarbon produced by cyanobacterial ADOs, the insolubility of its precursor, octadec(a/e)nal, poses a conundrum with respect to its acquisition by ADO. Herein, we report that AAR from the cyanobacterium Nostoc punctiforme is activated almost 20-fold by potassium and other monovalent cations of similar ionic radius, and that AAR and ADO form a tight isolable complex with a Kd of 3 ± 0.3 μM. In addition, we show that when the aldehyde substrate is supplied to ADO by AAR, efficient in vitro turnover is observed in the absence of solubilizing agents. Similarly to studies by Lin et al. with AAR from Synechococcus elongatus [Lin et al. (2013) FEBS J. 280, 4773-4781], we show that catalysis by AAR proceeds via formation of a covalent intermediate involving a cysteine residue that we have identified as Cys294. Moreover, AAR specifically transfers the pro-R hydride of NADPH to the Cys294-thioester intermediate to afford its aldehyde product. Our results suggest that the interaction between AAR and ADO facilitates either direct transfer of the aldehyde product of AAR to ADO or formation of the aldehyde product in a microenvironment allowing for its efficient uptake by ADO.


Journal of the American Chemical Society | 2017

Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-glutarate-Dependent Hydroxylase

Andrew J. Mitchell; Noah P. Dunham; Ryan J. Martinie; Jonathan A. Bergman; Christopher J. Pollock; Kai Hu; Benjamin D. Allen; Wei-chen Chang; Alexey Silakov; J. Martin Bollinger; Carsten Krebs; Amie K. Boal

Iron(II)- and 2-(oxo)-glutarate-dependent oxygenases catalyze diverse oxidative transformations that are often initiated by abstraction of hydrogen from carbon by iron(IV)-oxo (ferryl) complexes. Control of the relative orientation of the substrate C-H and ferryl Fe-O bonds, primarily by direction of the oxo group into one of two cis-related coordination sites (termed inline and offline), may be generally important for control of the reaction outcome. Neither the ferryl complexes nor their fleeting precursors have been crystallographically characterized, hindering direct experimental validation of the offline hypothesis and elucidation of the means by which the protein might dictate an alternative oxo position. Comparison of high-resolution X-ray crystal structures of the substrate complex, an Fe(II)-peroxysuccinate ferryl precursor, and a vanadium(IV)-oxo mimic of the ferryl intermediate in the l-arginine 3-hydroxylase, VioC, reveals coordinated motions of active site residues that appear to control the intermediate geometries to determine reaction outcome.


Inorganic Chemistry | 2017

Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes

Ryan J. Martinie; Christopher J. Pollock; Megan L. Matthews; J. Martin Bollinger; Carsten Krebs; Alexey Silakov

The iron(II)- and 2-(oxo)glutarate-dependent (Fe/2OG) oxygenases catalyze an array of challenging transformations via a common iron(IV)-oxo (ferryl) intermediate, which in most cases abstracts hydrogen (H•) from an aliphatic carbon of the substrate. Although it has been shown that the relative disposition of the Fe-O and C-H bonds can control the rate of H• abstraction and fate of the resultant substrate radical, there remains a paucity of structural information on the actual ferryl states, owing to their high reactivity. We demonstrate here that the stable vanadyl ion [(VIV-oxo)2+] binds along with 2OG or its decarboxylation product, succinate, in the active site of two different Fe/2OG enzymes to faithfully mimic their transient ferryl states. Both ferryl and vanadyl complexes of the Fe/2OG halogenase, SyrB2, remain stably bound to its carrier protein substrate (l-aminoacyl-S-SyrB1), whereas the corresponding complexes harboring transition metals (Fe, Mn) in lower oxidation states dissociate. In the well-studied taurine:2OG dioxygenase (TauD), the disposition of the substrate C-H bond relative to the vanadyl ion defined by pulse electron paramagnetic resonance methods is consistent with the crystal structure of the reactant complex and computational models of the ferryl state. Vanadyl substitution may thus afford access to structural details of the key ferryl intermediates in this important enzyme class.


Accounts of Chemical Research | 2007

Non-Heme Fe(IV)–Oxo Intermediates

Carsten Krebs; Danica Galonić Fujimori; Christopher T. Walsh; J. Martin Bollinger

Collaboration


Dive into the J. Martin Bollinger's collaboration.

Top Co-Authors

Avatar

Carsten Krebs

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Squire J. Booker

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Wei-chen Chang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Ning Li

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Alexey Silakov

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Amie K. Boal

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanne Nørgaard

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Lauren J. Rajakovich

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Maria-Eirini Pandelia

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge